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Foreword

This book contains the proceedings for the Sixth International Workshop on
Plan 9, IWP9. It was held on the 20th and 21st of October of 2011 at ETSIT, Rey
Juan Carlos University. We, the organizing committee are proud of hosting this
workshop again. Back in 2005 when we hosted the first one, we did not imagine
it would continue for so long, getting to be the meeting point for the Plan 9 and
Inferno communities.

The workshop includes a tutorial by Sape Mullender on the important topic of
performance evaluation. There is also a panel discussing news from new
systems and ports, new sprouts coming out of Plan 9 an Inferno: nix, osprey
and new ports of inferno. A lot of work has been going recently into these new
systems and furthering the reach of the Plan 9 approach.

This workshop was organized by the Systems Lab, a group in the Systems and
Communications Group (GSYC, URJC), and Erik Quanstrom. It would have not
been possible without the financial and logistical support! from Rey Juan Carlos
University and the Comunidad Auténoma de Madrid, which we would like to
thank as well.

We would like to thank Sape Mullender, Brantley Coile, Charles Forsyth, and Jeff
Napper for being in the Program Committee. We also thank the original writers
of Plan 9 and Inferno for their insight and the great job they did designing and
programming this wonderful system and the community of people around the
world who keep contributing to it.

Proceeding updates and an online version of this book are available at the
website http://iwp9.org.

The Organizing Committee:

Francisco J. Ballesteros
Gorka Guardiola
Sergio de Mingo
Erik Quanstrom
Enrique Soriano

1 This workshop is supported in part by Spanish CAM grant S2009/TIC-1692
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ABSTRACT

An information system for scholarly work on natural hazards calls for the
design of a computer system for transmission of information over very long
periods, and for traceability. An abstract analysis shows that these require-
ments are dual to the fundamental question of assisting the cognitive activ-
ity of a user using external memories, which reaches a very general scope.
The solutions should be implemented at the operating system level, mainly
the file system, and Plan 9’s file systems and other properties make it the
soundest base for our work. We present our road-map for development.

1. Introduction: the case of a computer system for scholarship on natural hazards

We were requested to design an information system supporting scholarly work on natural
hazards. It quickly appeared that all visible, mainstream systems sorely lacked some core
properties, thus incurably disqualifying them, notably in their relation to time. We there-
fore considered a more fundamental problem: building the necessary foundations of a sys-
tem to work on natural hazards. Early on, it became obvious that many requirements for
the system were not specific to that field. Even so, ‘natural hazards’ provides a good con-
crete example to guide the design. For example, it naturally involves century-long dura-
tions, which has significant implications for the design. Furthermore, by their nature, the
natural events that will form the data records are unpredictable, and their nature often pre-
cludes making precise observations at the time. Crucial data arrives unformatted from
endangered persons. Later, historians will delve into archives, sifting centuries-old files,
seeking to reconstruct events. That is exactly the process we want to assist. The context
of the reconstruction or investigation matters too. For example, if the work is contractual
it might be brought before a judge for arbitration, which would proceed by retracing its
sources; similarly, a scientist or scholar might need to retrace arguments made earlier by
others, and check results. On behalf of the earlier author of any conclusion, one should be
able, provably, to revert to the exact state of information he had recorded at a given date,
and perform again the same processing steps. Thus, data collected today might still be
required in a remote future. For working on natural hazards we see a need to design an
information system for the next 500 years! That leads us to the question: what is invariant
over such time scales?

The ‘“‘sciences of traces’”” — history, archaeology, paleontology, geology, cosmology (on
“memories of the world about itself’’), the now fashionable forensic medicine — all share
the essential structure of a police investigation. This hints that, when thinking on scales of
centuries, any design will be totally unspecific to any particular application domain. Trace-
ability is the key element to reproducibility in science. Let us establish that two questions



are dual in the mathematical sense (they are two sides of the same coin): 1. The very
long-term transmission of knowledge established on digital memories. 2. The absolutely
minimal functionalities a computer should fundamentally provide for sustaining, assisting
a user in his cognitive activity.

All the usual assumptions for designing an information system are swept aside by dura-
tion. Space coordinates are taken as an invariant index in geographical information sys-
tems, but space shrinks or expands during seismic events. Continents drift. Concepts
evolve. Languages change. No application ““ontology’’ could be expected to last, only very
abstract concepts. One cannot envisage a data model (in the usual sense) for a very long-
term repository. Hence a very long-term database should be completely agnostic to the
kind of data it will store, and have no data model at all.

2. Into outer space: An abstract analysis, for the essentials of the structure of an
external memory system

Our model of the system can be expressed visually by Figure 1. The o part depicts our
expanding universe unfolded in space-time, in a way standard in physics since Minkowski.
The world at a given point in time T is a slice of space-time, represented as a Venn dia-
gram: the set of perceptible events at T. By construction, events are fixed points: unchang-
ing, invariant entities. The arrow of time T is irreversible.

world at T

orld time line

world line

. track-preserving
event (=memory)

| track-diffusing
. event

perception,
modeling,
measurement
® T ° T a 7 = T
)/—\ machine time line
e Text x ref. Directories
Scripts (uid, host, t, pos.)
Scripts = Text
Arbitrary virtual update Images
formal Video
specifications List of refs:
Ceciest une
This is a piece of metadata

Figure 1. The whole article can be considered an extended legend to this diagram for the abstract
setting of our design. The idea of including o in the form of a Minkowskian diagram was inspired
by Schueler’s remarkable paper[17].

Two notable kinds of events are shown: those leaving long-lasting tracks (a fossil, a foot-
print) appear like tubes, and those which don’t (like a perfume spray). Observing a slice of



a tube implies an event in retrospect, if only one has the ability to interpret tracks, and
traces. Otherwise past events are lost.

If we are to capture facts about events (in w), we need to take their image under a given
relation, in the sense of set theory. An image in the form of a series of symbols is the con-
venient way to put things in writing, into an external memory. This relation from events to
categories and eventually symbols takes varied forms, some are termed perception, mod-
elling, measurement, or even database form filling. Recordings of these assignments come
in sequence along a time line.

The o and w parts display an inviting symmetry. Since events are fixed things, so should
be their images: written once-for-all, never altered again. Images, if they are to play their
role, must be written on lasting, immutable external memories—tubes. External memories
act as messages; they offer to parties of a contract the cross-checking abilities that are
essential to their use, like the physical tokens of Neolithic accounting systems [16].

The whole purpose of the diagram’s w is to break symmetry with & on time; unlike T, t is
reversible: it can be travelled up and down. The impossible motion back and forth on T is
replaced by a motion in space, between preserving tubes of memory indexed by t.

Together with t, a user ID wuid, and a unique repository name host, form the triplet ID of a
record. These are the only metadata elements guaranteed to appear for every record.
(Obviously, they are strictly internal to the recording system.)

Note that the machine representation for t does not have to start at the (hypothetical) ori-
gin of T for the universe: an artificial epoch is enough, such as 1970 in Unix time, or the
more recent date of establishment of the repository. The stated dates of events are to be
written in the records themselves, using for T a calendar representation, to which machine
time must naturally be connected (with that connection deposited periodically in records).
Pointing to cosmic, geological, paleontological remote events on T is done by ‘“‘inductive
referral’’, through a theoretical construct. For example, consider the chain of hypotheses
and processes involved in carbon-14 dating an artifact as 14,000+500 years before pre-
sent, which in effect builds a virtual time arrow. Similarly, description of where events take
place is not primary, but secondary; it is of course of importance, but cannot be enforced
in the records.

Machine time t is the only organising dimension of the repository. It is a simple order,
expressing the intrinsic ‘sequentiality’ of any subjective experience. Sequentiality is the
only structure inherent to the system by design. It is the only indispensable and unavoid-
able structure that should possess an external memory system, as reflected by the dia-
gram; and no other structure should be put in without harm.

An elementary cognitive operation consists in picking two arbitrary memories, experienced
at any times, and relating them in some manner. Thereby for instance an insignificant
event in childhood suddenly makes sense in the light of a recent reading. Relating two
events is done in X by referring to their records. In an X record, referring to a past record
is to open a view on it: a generalisation of what a directory provides on usual file systems.
A view can gather arbitrary records, comment them freely, support action on (parts of) its
constituent files through scripts, and include visualisation and user interaction facilities. A
view could also be used for instance to provide another user with visibility and rights of
accessing a given set of files, or to display several parts of files as a single body. We see
here the demand for a computer language to express such views.

Diagrams w and X represent well the progress of, say, an historian’s trajectory through an
archival corpus, making records, reconsidering them, viewing them arranged in any order
he likes. More broadly, it represents an investigation in any ‘“‘science of traces’’, and even
more generally, the acquisition of knowledge along a lifeline, in a linear succession of
encounters of people, situations, books, etc., all marking events in time. At an abstract
level all these processes are formally identical: w and X capture both some essentials of
cognitive activity and of an external memory system for expanding, augmenting cognition.



A ship’s log book is a perfect characterisation of a lifeline, it reflects in its sequential
records the ship’s navigated trajectory around the sea, and its conjunction with significant
events at each time and place. The corresponding basic information system architecture is
that of a computerised log book.

Our design minimally implies two components, a linear, sequential file system, strictly
‘write once’, and a language to express free comments, references to records, and invoke
arbitrary scripts on records.

3. Long-haul message passing into the future: the need for a corpus

Any writing is a message sent into the future (if only to oneself). A message makes sense
because of a convention, a contract between parties. If my collaborator voices “42’’ over
an experimental equipment, that can be a perfectly qualified piece of data between us. On
the other hand an isolated file containing ‘42’ makes sense to no one. Agreeing on a
given protocol allows a message to achieve its intended purpose, carrying meaning, and is
called interoperability. Applications agreeing on a file format achieve so-called technical
interoperability. Conforming to shared ontologies allows so-called semantic interoperabil-
ity. By contrast, messages between humans have no static semantics; they must be sub-
mitted to interpretation, just as any track requires the skill to interpret it to reveal a past
event. Interpretation needs to know the surrounding context of the message, a larger con-
text with cultural distance.

For data, that context is the corpus: a substantial body of information with internal closure
and additional connections to our present world, enough that we can interpret a given
item. The further into the future a message is sent, the more it needs a whole corpus of
documents as a context to convey sense, because interpreting the message implies recon-
struction of the whole sender-receiver-transaction-motivation setting. Protocols and con-
ventions, and cultural values evolve. Scripts get forgotten, and only when a substantial
corpus of connections, with enough closure is available can they be deciphered, as with
Egyptians hieroglyphs or the Maya script. It follows that a corpus is the best basis of trust.
Internal closure eases forgery detection. Traceability is a fair basis for reputation.

The DOI system documentation [3] asserts that managing data implies managing relation-
ships between entities: A has the relationship B to C. For instance, ‘““Albert Camus is the
writer of La Chute’”, an expression that directly maps into, say, RDF. Provenance should
not be omitted: who said that, and when. Relationships between entities is often called
metadata.

A corpus is ‘“extreme metadata’’. Clearly any record in our repository is metadata to any
other one it references, and conversely. Even more so, any set of contemporary records
are implicitly but strongly connected just by being close in time: a Freudian slip, or even an
empty record, can convey meaning just from its position after an otherwise unrelated
record.

4. Contrasting with current architectures: enforced order

All current systems force data into a Procrustean bed of arbitrary orders, ultimately distort-
ing it to the point of defeating its use, and even obstructing its entering the data system.

Current file systems insist we arrange files in a hierarchy. Thus we try to express seman-
tics in a hierarchy. How long can a hierarchy, however carefully devised, accept new sub-
jects without breaking? Also, much too often, a file should legitimately be in two different
places. Large libraries confront the same dilemma [18], when two yet unrelated disci-
plines, remote in classification and physical arrangement give birth to a completely new
one. The negative consequences of imposing arbitrary order on data where it does not
belong poisonously pervade every task. A file system hierarchy also cannot grow indefi-
nitely without requiring foreign mechanisms, such as logical volumes. By contrast, our lin-
ear sequence of records naturally splits up in articles and extends easily by adding memory



devices. For the same reasons, it lends itself well to parallelism.

Relational databases similarly force data into the relations of a given data model. Diagram
w shows how a very long-term database can be agnostic to the kind of data it will store, by
reducing to a single table with key uid, host, t. Hence no database system is needed, just a
file system. (If you do want a database, however, there is no difficulty in periodically stor-
ing its current state and log inside a record.) A database model somewhat supposes it
exhausts the possibilities of what will have to be recorded in the future.

Forcing inappropriate order, current systems make it difficult to accommodate really new
concepts. What protocols, what conventions will be demanded in the future, we cannot
foresee and must not prejudge.

The computer system outlined in the diagram — a computer being a memory with an
engine to process data — retains only the minimum necessary to support cognitive activity,
and allow transmission of knowledge into the distant future.

5. Storing files as the privileged digital abstraction

What digital abstraction should we make accessible to the user? Files are almost univer-
sally available, well understood, and uniformly usable: they hold everything. We feel we
also cannot avoid file hierarchies, because most systems present themselves in that form
and can only be used in that way. Accepting hierarchies does not mean forcing everything
into hierarchies: it is only a facility offered locally in a record.

The intended linear, sequential file system uses Venti [10] as block storage layer. Unicode
is the encoding of choice, with its universal scope and strict stability principle, consistent
with our concern.

6. Correcting errors without hard update, and the generality of references

Requiring traceability has a drastic consequence: since updating contradicts traceability, in
our system you can neither erase nor change any data, once recorded. Figure 1 illustrates
that traceability is an integral part of cognition, inseparable from it, and that in this design
a correction is impossible, because the past cannot be changed. Similarly, a hard update
operation, by rewriting data in place, would contradict the essential function of a memory
system. Instead, one may specify a view with arbitrary transformations to apply to any pre-
vious record. Given this mechanism, most operations become surprisingly simple, because
everything written is immutable; thus, if something works today, it will work forever. (Sup-
pose that necessary hardware architectures can be emulated or virtualised.) There is no
potential for ‘inconsistent updates’ when updating-in-place is avoided: layers and layers of
comments may overlay one another, even contradicting each other, but without inconsis-
tency.

Even more important, time t is reversible, by building suitable views. Plan 9 is a living
demonstration of the soundness of suppressing update, at a certain level, in its main file
system, allowing the yesterday command to look into the system’s past. In his “Debug-
ging backwards in time’’, Bil Lewis [8] also shows the power of reversible t: by recording
every state change in the run of a program, you can navigate the unfolding of every bit of
information that might be useful (just as all events in & cover all the possible sources of
information, for ever).

7. Letting the user unobtrusively express his own order and trace it at desired detail

A single reference mechanism, at the level of records, accounts for citation, quotation,
annotation, comment, or extracting data to feed into a process.

All the expressed order, all the structure is formed within records (especially as views),
except for the unavoidable temporal sequentiality. It is the only place for variation, and it
gives complete freedom: arbitrary structures can be expressed. Current systems tend to



mix places where order is expressed, and maintain a confusion between stating ‘‘In my
present opinion, this piece of information is incorrect, because such and such”, and the
urge to rewrite the past. This approach is rather different from much work on file systems
with semantic concern [5], though not necessarily incompatible with it. Reference and
annotation, not updating in place, is the general case, and appropriate to traceability. The
essential thing is to let the user specify his own order, rather than impose an arbitary one,
and to ensure traceability in a non obtrusive way.

In cognition, selected events are recorded, and structured into one’s own order. Some
events are left dormant, some are continuously reactivated and reused, but few if any are
totally forgotten. Cognitive psychology and perception theories consistently see the world
as a chaos — in the sense that its structure is foreign — that each subject is challenged to
organise, to render consistent for himself. (The chaos was represented in Figure 1 by an
amorphous set in ®.) When represented in an external memory, that organisation is also
personal.

The very nature of a personal work is to impose one’s own order on things. Generations of
historians can follow one another working on the same corpus without repeating them-
selves; in this type of scholarship the essential contribution of each is offering his own
model to interpret data, rather than simply applying a borrowed model. For example,
many scholars reorganise their bookshelves for their current project, and workers often
keep a selection of books or papers at hand, on a desk.

The decision of what to retain is a recurring one, and all too easy to overlook. For exam-
ple, you receive a Sibylline email with a URL “explaining it all’’. The email was archived,
but years later it no longer makes sense since your sender forgot to save the world simul-
taneously, and the URL vanished. If a reference is really useful, its name alone can do
nothing: something must be retained of its content.

So far we have treated the architecture displayed in the diagram as entirely devoted to a
personal repository. But since the structure with its triplet ID is absolutely minimal, it is
not surprising that it extends smoothly to a collective use. There is no operational gap
between personal and collective work in this architecture. The result of contemporary or
delayed annotations is a fairly thorough record of the cognitive interaction of users. Users
can use the same repository independently without harm, if they wish. There is in princi-
ple no obstacle to a very large number of users. Exporting the trace of a record is easy, by
capturing all the cascade of dependencies (which can be very large if a view says, for
instance, that it discarded very many records for reasons it extensively exposes as justifica-
tions). Records from different repositories can easily be mixed and disentangled. The
write once, sequential structure makes it easier to do distributed replication. Backlinks are
easy to find with an index, much as the web is indexed for search engines. The index can
grow incrementally, and be recorded just as any other data.

Having all the structure expressed in records has an important consequence on the use of
names. Names given at the birth of an object are important, for files as well as for variable
names in programs. But new names are called for when going into foreign languages (or
staying in the same place, waiting long enough). References and views allow naming,
assigning names appropriate to the current use for a file, a set of files or portion of a file,
or a set of portions... any describable structure. Views open the possibility of a unifying
namespace that could stand for centuries, evolving but always ultimately referring to the
same original collection of data. Just as we have seen that metadata (relating two records)
is by nature always an afterthought, appropriate names, which are just a particular type of
metadata, are often found belatedly. A new way to view things is often a new way to name
them. Certain names come to be accepted as labels, which restrains both the proliferation
of names and the complexity of their relationships. A synthetic view can also cut back
complexity.



8. More on personal vs. central repositories

There is more to justify personal repositories. ‘‘Information empires’, where data stores
are more and more concentrated, cannot be blindly relied on as external memories, how-
ever self-confident their security, or however open their systems. Any technical organisa-
tion can break. Natural hazards lurk. Empires by definition are subject to radical deci-
sions. It is reported that Qin Shi Huang, the first emperor of China, had all existing books
not complying with Qin historians burned (with exceptions for a few special fields), and
later buried alive scholars who either still owned those books or still had them in mind and
could spread their ideas. The library at Alexandria was destroyed. Information empires
today are not in a different position. In mid April 2011, Google announced that on 29
April, 2011, files hosted on Google Video would no longer play, and completely shut down
the service on 13 May [1], thus disproving those who promoted video sharing as an
archival solution. Users, if still alive, had that short time to hear about the shutdown, and
quickly download their files again, because no archives were to be kept.

In the same vein, many initiatives of data preservation are focused on large data sets [7].
Among many reasons, large projects make it easier to attract funds, and to impose on their
users constraining technical choices to ease administration. But the problem is actually to
capture people’s work the way they work: that is, how they interact with data. Any one
seeking today for a long-term digital preservation solution on a personal basis is left with-
out a solution, even without mentioning the inability really to address the concern for
preservation in everyday activity. But preservation, archiving, cannot be an afterthought,
all the more so in the digital world. The history of science teaches us that the most sur-
prising breakthroughs come from the most unexpected conditions, and they are by nature
impossible to predict. If we want to capture them, we need a solution to hand. Meanwhile,
a huge amount of knowledge is continuously being built by hosts of individual researchers
around many small, valuable data sets. Then some day scientists retire, and the traces of
their knowledge retire with them. And it is not uncommon that a few month after submit-
ting a paper, traces of how to reproduce the results are lost [2].

In the scientific field, we witness in practise that the more computers become intimate at
every stage of a scientist’s work, the less a given piece of work becomes reproducible,
whereas we might expect the exact contrary. The creeping of instant messaging into sci-
entific work, and the occasional vanishing of data on the Web, challenge more and more
one’s ability to capture them efficiently, and to retain appropriate images of them to make
them usable as reliable references.

By reading a novel, one can experience someone else’s slice of life, without having to actu-
ally live it. By borrowing someone else’s library, one can watch through his cultural win-
dow. By borrowing someone else’s repository, one can go even further, with the choice of
jumping to conclusions, and backtracking freely to the sources, nearly walking by the
stream of thoughts of a forerunner. The projected system, serving as a general digital lab-
oratory notebook, would give that incredible ability to follow in someone’s footsteps. If we
want to “‘climb on the shoulders of giants’’, we must be able first to follow in their foot-
steps (in their tracks). We argue that we certainly need solid, provable personal digital
memory systems that are easy to manage.

9. Implementing a linear (sequential), write once file system

This section is even more a call for comments than the rest of this paper. It should now be
obvious that an adaptation of Fossil [11] reaches the specification we aim at.

There will be, side by side, a user’s workspace (home directory) together with the set of
files necessary to boot the operating system into a particular, functional state, and a spe-
cific deposit area in which to put files or directories that will become a repository record by
a sort of on-trigger prompted snapshot process that builds a specific Vac file with the
attached triplet (uid, host, t). (A typical t would be an integer count from an arbitrary



origin, convertible in calendar time; note that for instance 64 bit at a nanosecond resolu-
tion represents about 584 years.) Venti need not be changed.

It is up to the user to determine the chunks of data (e.g., a whole directory or many sepa-
rate files) that are to become records; the main rationale is his own convenience. The
semantics of ‘gathering files’ initially is not particularly strong and is likely to be split into
more specific sets in the future.

Eventually all the files are found in the repository. It seems that the notion of a home
directory is necessary to hold at least a list of maintained views on what my work has been
so far, or what my workplace now is. But in fact, a single view is enough, and perhaps
experience will show that the distinction of a home is unnecessary and it suffices to fetch
the last personal view from the repository. A view might also allow fetching all the bindings
needed to boot a particular operating system state and file system configuration. As a
result, only a transient workspace where current work takes place might be enough. Cach-
ing that workspace, to have it at hand immediately when one returns to the machine, is
close to having a home directory.

Of course some bootstrap is required to first explore enough of the repository to be able
to load and jump into another machine. Having the full hardware-software stack available
is the definitive—the best possible—condition for allowing a user to interact with a given
file fully. For preservation purposes, confining the main work inside a virtual machine
allows saving and restoring that complete hardware-software stack. Most of the work
should unfold on the repository, but determining how much so is reasonable, still needs to
be determined by experiment.

The sequential record structure means that cutting a large repository into stripes as it
grows to huge sizes is easy. Parallel access is then possible, which conversely results in
duplicating some blocks, with an independent Venti for each stripe.

We assume it is or will be possible to monitor media memories for degradation (which is
eased on a Venti-based storage system), and migrate them accordingly, thus ensuring con-
tinued access to the bits of a file. Many copies also make data safer [13]. Well-traced,
workable, computable corpora as planned here will undoubtedly be better candidates for
the effort.

10. A language for the elementary interaction and its text editor

References—(hyper)links—are expressed as text, pointing to a record by a triplet uid, host,
t, and a position. In a text file, a position is a simple integer (if you count in characters,
different from bytes in UTF-8), but segments of text can be located by any other mean,
like a string search, a regexp, or using the patterns and region intervals of “‘lightweight
structured text processing’ [9]. (Remember that if a string search leads unambiguously to
a position, it will always, since files don’t change.) In an image or other special formats,
appropriate locators must be used.

As a minimal effort implementation we use Emacs’ Org mode from a Linux system. Org is
a general purpose tool and a coordinated light syntax (in plain text files) for keeping notes,
outlining text, internal and external links, including source code blocks and evaluating
them, and converting them into source files using the noweb convention of literate pro-
gramming [6]. Exports to various formats including LaTeX are easy, it also comes with
many useful facilities as timestamping and calendrical calculations (so useful to historians),
agenda views, tagging, maintaining to-do lists, very fit for project planning and perfect for
keeping a log book, and at the moment, to give a feeling of what could be the work on a
log book structure.

The aim at this stage is to do the work mainly from a Linux installation, with great use of
Emacs (we know we are in a state of sin, but it compensates for many gaps of integration
between the operating system and its windows). All the repository is kept on file systems
under Plan 9. Nearly all the facilities we need are present under Emacs, or otherwise



relatively easy to develop. Commands like find-dired or find-grep-dired in Emacs can give
users a good intuition of what a view might be, in general, and of the power of text manip-
ulation. There are, however, exciting prospects in a combination of features from Acme
and Emacs, under the Plan 9 namespace.

Linux is not too exotic for a fully-fledged environment for a large set of potential users,
and is becoming Plan 9 tamed. It is realistic not to expect people to shift from their habits,
especially if we look more widely for future users, especially in the humanities or other
fields ‘‘foreign’ to computer science, to experiment with the system. One of the ultimate
purposes is to be able to tempt users of any operating system with a facility for traceability
that mildly changes their habits, though inevitably some systems will offer a result with
rougher edges than others.

This combination we aim at offers the least-effort path to a minimal working installation of
what is meant as a general purpose environment, as seamless as possible from program-
ming to common use. It is difficult and useless to try to foresee what usage patterns will
emerge, and nothing can replace hands-on experience. For instance, whether there
should be some sort of reserved keyword to state “This is a correction” is left open,
though intuition suggests that we ought to avoid it: proper computer semantics can reside
in the repository’s scripts, and fine human semantics can be written as subtly as poetry, in
an accompanying comment. And natural languages evolve... Leaving the system widely
open to multilingualism today, is to make it ready to face the future.

11. Concluding remarks

This paper is an attempt to define and justify the design of a digital system for traceability
on a very long term. We have felt necessary to present an analysis in very abstract terms,
axiomatic in spirit, and to connect each aspect with illustrations from a large range of cul-
tural fields. It appears that embracing centuries consistently leads us to some fundamen-
tals of cognition and cultural heritage, and perhaps paradoxically to the minute details of
day-to-day work.

Early on, this diagnosis led one of us to seek a solution in operating system software
research, and Plan 9 emerged as a prospect. After all, an operating system is a set of pro-
grams that make it easy for computer users and programmers to do their job [14]. We
hope we have reached a sound, convincing outline, and identified some important essen-
tials of working with a computer (and other sorts of memory devices!). Others should
appear in the process of experimenting with a first implementation of the system. We
hope that the design is clear, minimal and well-layered enough that we can cope with such
surprises.

Our firm belief is that there is a favourable, exclusive niche position for Plan 9 on this
topic, from where could emerge opportunities to spread like a virus. We submit that reflec-
tion to the Plan 9 community.
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ABSTRACT

Gostor is an experimental platform for testing new file storage ideas for post POSIX
usage. Gostor provides greater flexibility for manipulating the data within the file, including
inserting and deleting data anywhere in the file, creating and removing holes in the data,
etc. Each modification of the data creates a new file. Gostor isn't constrained by organizing
the files in hierarchical structures, or identifying them with strings. Thus Gostor can be
used to implement standard file systems as well as experimenting with new ways of storing
and accessing users’ data.

1. Introduction

Currently there are two popular ways of storing data — hierarchical file systems, and relational
databases. The hierarchical file systems consist of files (arrays of bytes) that have names. The
files are grouped in directories which can be members of other directories. In order to access
a file, one needs to know the path, i.e. the list of directories from root of the file system.
Files data can be overwritten, but new data can be added only at the end of the file. Most of
the popular file systems support the POSIX (or similar) set of file operations [2]. Relational
databases enforce strong structure on the stored data, by enforcing it to be fitted in a set of
tables. The data can be accessed by using the SQL language. Relational databases provide
better consistency and concurrency guarantees. They are hard to install and maintain, often
requiring professional database administrator in order to achieve reasonable performance.

There have been many attempts to introduce the benefits of databases to file systems, such
as transactions, snapshots, etc. Even though some popular file systems support snapshots and
versioning, creating and manipulating snapshots is not part of the standard file operations.

In many cases, especially with scientific datasets, extending files only at the end is too restric-
tive. To avoid the limits, some scientific data formats, like HDF [1] re-implement most of the
file system data structures in the file.

There are some attempts to go beyond both hierarchical naming of files as well as relaxation
on the restrictions on how the content of the files can be modified. hFAD [4] allows data to
be inserted and deleted at any place in the file. It also removes the dependency on file names
when accessing the files and allows adding tags that describe the content of the files.

Most of the attempts to change the way data is stored and accessed are built on top of standard
file systems or databases.

Gostor is a low-level storage system that provides consistent way of manipulating arrays of
bytes, providing both versioning support as well as ability to insert, delete and modify data
anywhere within the array. It also allows insertion and removal of holes in the array.

Gostor avoids the issues with hierarchical file names by not supporting them. All files in Gostor
are immutable and can be accessed by a 64-bit ID that is returned when they are created.
Files are created by cloning already existing files and modifying some of file's data.

*LANL publication: LA-UR-11-11422



2. Gostor Architecture
2.1. Files

A file in Gostor is an immutable string of bytes. Regions of file where data haven't been
written are holes in the file. They are not stored and don't use disk space. Reading from a
hole region returns zeroes.

A file is identified with a 64-bit integer called filelD. The fileID may change during the life
span of the file. If the fileID is changed, Gostor guarantees that all references to the old
fileID within the storage will be modified, and that the old fileID can be used until they are
specifically discarded, or the connection to Gostor is closed. There is no guarantee that a filelD
retrieved during previous connection will still be valid when a new connection is established.

File with fileID 0 always points to a zero-length file, and cloning it is how new files are created.

2.2. Data Content Types

When reorganizing the disk space, Gostor needs to know if any of the files contain references
to other files. For that reason all data stored is assigned data content type. When writing
data to files, the user can specify whether the data contains references to other files. Because
data type is specified by write, there is no restriction for the whole file to have the same data
content type. Gostor can coalesce content of data written by multiple writes as long as it is
sequential and of the same type. When data is read, Gostor returns only data of the same
content type.

Currently there are only two data types available to the user:

Data Type Description
BTData Data that doesn't contain any filelDs
BTDir File content with only filelDs

Gostor defines additional data content types that are used internally to implement the file
layout.

Gostor allows up to 32 thousand data types defined, but currently doesn’t provide operations
in the protocol for creating new data types. Extensions to Gostor (such as file systems) can
use an internal API.

2.3. Operations
2.3.1. Read

read(file, offset uint64, buf [lbyte) (count int, dtype uinti6,
err os.Error)

The read function reads up to length of the buf array bytes from the specified file, starting
from the specified offset and stores it in the buf array. It returns the number of bytes
returned as well as the data content type of the data. If an error occurs while reading, err
contains the error.

Read can return less than len(buf) bytes in two cases — if there is no more data in the file
(i.e. offset + len(buf) is greater than the file's size), or if the data in the file has mixed
data content types.

2.3.2. Write

write(file, soffset, eoffset uint64, count uint32, data []byte,
dtype uint16) (newfile uint64, err os.Error)

Because Gostor files are immutable, each write operation creates a new file. It receives an
existing file as argument, clones its content, applies the changes of the data content and
returns the fileID of the newly created file.



The write call is used to do any modifications to a file. It replaces the data currently located
between offsets (soffset, eoffset) with count bytes containing the data from the data
array. If the length of the data array is less than count, a hole is created at the end of the
region. Table 1 shows examples on how the write operation can be used to modify the data.

Operation Description

write(.., 10, 10, 100, data,..) Insert 100 bytes of data at offset 10

write(.., 10, 10, 100, nil,..) Insert 100 byte hole at offset 10

write(.., 10, 110, 0, nil,..) Delete 100 bytes of data starting at offset 10
write(.., 10, 110, 100, data,..) Overwrite 100 bytes of data starting at offset 10

Table 1: Examples on data modifications using write

2.3.3. Size

size(file uint64) (size uint64, err os.Error)

Returns the size of the specified file.

2.3.4. Forget

forget(file uint64)

Informs Gostor that the user is no longer going to use the file with the specified filelD. If there
are no more references to the file, it may be garbage-collected.

3. Current Implementation
Gostor is implemented in Go. Currently it is approximately 2000 lines of code.

3.1. Segments and Blocks

Gostor uses log-structured data layout, similar to the ones used in log-structures file systems [3].
The disk space is divided into segments, and the segments are kept in a doubly-linked list.
The segments can be free, full, or active. There is only one active segment at a time. All
new data is appended at the end of the active segment. Once the segment is full, it is marked
as “full” and the next segment in the list is set as active.

The space within the segments is not divided into fixed-size chunks. Each segment consists
of a number of variable-sized blocks. Each block can be up to 2!¢ bytes long (including the
header). The header of the block contains its size as well as the type of the data it contains
(data content type). The blocks always start at an even offset.

Figure 1 shows the physical layout of the segments and the blocks.

3.2. Files

Gostor uses modification of Btrees to describe files. Blocks at level 0 contain the data of the
file. Blocks at level 1 contain entries to the data blocks at level 0, and so forth. Because
Gostor allows insertion of data anywhere in a file, offsets to data are not constant and can't be
stored in the intermediate Btree blocks. Instead, each Btree entry contains the size of the data
it describes. Normally the Btree blocks are fixed size and waste some space when there are not
enough entries. Because of the log-structured layout used by Gostor, the Btree representation
we use is compact and doesn’t waste any disk space.

The filelD of a file is the offset (relative to the beginning of the disk) of the block describing
the root of the file Btree. This approach simplifies the implementation of Gostor and avoids a
level of indirection, that is common to inode based systems.
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Figure 1: Gostor Disk Layout

Figure 2 shows an example of a file with fileID 348. The file's Btree has tree levels. The first
entry in the root block points to block 388 and defines that that block describes the first 1100
bytes of the file. Block 388 has two entries, one is 700 bytes long and the data is stored in
block 500. The second entry describes 400-byte long hole (the block is 0). Figure 2 also shows
how the file blocks are laid out in a segment.

3.3. Operations

The write operation uses the specified file's Btree as a base for the Btree of the newly created
file. It creates new blocks for a sub-tree of the file, up to the new file's root block. While
building a new tree, Gostor tries to coalesce neighboring blocks if their size is less than the
allowed size (216 bytes for level 0 blocks and 8192 bytes for intermediate blocks). Gostor fills
up the intermediate blocks with entries left-to-right so the rightmost affected block on the
level is left unfilled. This approach is optimized for the most-frequently use case when data is
appended at the end of the file.

Figure 3 shows the layout of the data when operation write (340, 700, 700, 162, data)
is performed on the file shown on Figure 2. The operation inserts 150 bytes of data at offset
700 and a 12 byte hole. Gostor coalesces the hole with the already existing one, so no new
entry for the hole is created.

3.4. Garbage Collection

Each write operation in Gostor creates a new file with a new root block, some intermediate
Btree blocks as well as some data blocks. In most cases, once the new file is created, the old
file is no longer useful and the blocks that belong only to it should be recycled. Gostor has
knowledge of all references to blocks stored in it. It also keeps track of the blocks that the
user is using at the moment. Forget operation should be called if the user no longer cares
about a block.

Having information which blocks are still in use allows Gostor to reclaim the space that is no
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Figure 2: Btree and Segment Representation of a File

write(340, 700, 700, 162, data) // len(data) == 150

700 150 12 400 975
File Content | Data | Data | | Hole | Data
File Layout

blk size _size block __ size block

2224 48 | 1262 | 2272 | 975 [ 436 |

blk size _size block __size block blkstze size block _ size block _size block
2272 48 | 850 [ 2320 | 412 a36{ 64 | 374 | 1216 | 567 [ 1606 | 34 | 2190 |
/ s / / /
blk size _ data blk size _ data blk size __ data bIkSIze data

2320.“ 1216 390 | 1606{ 583 | | 2190] s0

Segment Layout
header block _ block _ block  block  block  block block block  block block trailer _free space

308 340 388 436 500 1216 1606 2190 2224 2272 2320 3202 3218

Figure 3: Btree and Segment Representation of a file after write operation

longer accessible. Currently Gostor supports only in-memory garbage collection. When a block
is stored in Gostor, it is added to an in-memory list of data to be written to the disk. The
data is kept in the memory for some time, giving it a chance to get obsoleted by subsequent
changes to the list of live files.
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When the user is no longer going to use a reference to a block, the forget command should
be used to update Gostor's knowledge of what data is regarded as live by the user.

Currently Gostor supports only in-memory garbage collection. Once the data is committed to
the disk, it can’t be removed. Writing a garbage collector for the on-disk data is planned as
future work.

3.5. Committing Blocks to Disk

When a block is stored in Gostor, it is not written to the disk right away. In most cases, the
data in the block will be obsoleted soon by subsequent call and premature write to the disk
would be wasteful. Gostor keeps the blocks in memory for some time to allow the data to be
made obsolete. Gostore doesn't have knowledge what blocks will be actually stored on disk and
therefore can't assign disk offsets for the blocks before they are actually committed. Instead,
Gostor returns temporary offsets that can be used to access the data, or store references to
the block in Gostor.

Before committing the data on disk, Gostor runs the garbage collector to free all blocks that are
no longer live. Then it assigns disk offsets to the remaining blocks, and updates the temporary
offsets stored in the blocks to the permanent ones. It can do that because it has knowledge
of whether a block contains references to other blocks. Once the references are updated, the
blocks are stored on the disk. The temporary offsets can be used until they are “forgotten”.

4. Future Work

The current Gostor implementation doesn't have garbage collector that can reclaim data al-
ready written to the disk. There are plans for implementing copying, generational garbage
collector that crawls through the existing data and copies the reachable blocks into new seg-
ments. Because of the high penalty of reading all existing data, the future implementation
might be modified so it segregates blocks that contain references to other blocks in separate
segments.

Once the Gostor prototype is stable enough, we plan to implement conventional hierarchical file
system on top of it, as well as experiment with porting existing formats (HDF5) for scientific
data on top of it.
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Abstract

User-level networking has been applied mostly in the area of high-performance computing
since it allows applications to obtain maximum performance from the hardware. We argue that
running network protocol stacks in the user space also allows applications to reduce the amount
of state that the operating system kernel maintains on their behalf enabling much greater
application elasticity and mobility. We describe a lightweight user-level networking framework
that does not require any modification to existing networking hardware nor protocols. The
main advantages of our framework are its simplicity and ease of implementation.

1 Introduction

User-level implementations of network protocol stacks have existed for many years. Initially, such
stacks were used to develop and test novel network protocols which ran outside of the operating
system kernel and thus did not harm the kernel’s reliability. They were also easier to deploy since
they did not require kernel recompilation and reboot and were easier to debug [12, 17]. With the
advent of high-performance computing, user-level networking also became a mechanism to increase
application performance. By bypassing the kernel and interacting directly with the network inter-
face controller, applications could reduce their overhead and achieve lower communication latency
[18, 13, 4].

We claim that there exists yet one more reason to implement network protocol stacks in the
user space. As applications gradually move to the cloud, it becomes increasingly important to be
able to checkpoint, suspend, resume, marshal, and migrate applications. All these tasks are greatly
simplified if the operating system kernel maintains very little or no state on behalf of user processes.
This state, however, is very often stored by kernel-level network protocol implementations, for
example in the form of connection parameters and acknowledged data buffers. In order to support
application elasticity and mobility, the operating system needs to be able to extract application
state from its internal structures and consistently redeploy it when needed. By running the entire
network stack in the user space, not only do applications limit their kernel-level state but also gain
an opportunity to react to mobility events in an application appropriate way.

Further, we argue that running network protocol stacks inside user applications naturally im-
proves modern hardware utilization. According to the current trends in computer architecture
evolution, both the core count per host and network bandwidths grow at a high rate. In order
to utilize hardware efficiently, network traffic needs to be processed in parallel on multiple cores,
which can be achieved by dispatching packets from the network interface to the application cores
as early as possible. Such a design also improves memory cache performance because each packet is
processed mostly by one core only. Finally, high-performance applications might tune the behavior
of their network stacks using application-specific knowledge in order to achieve better performance.

Many existing approaches to user-level networking require either using specialized networking
hardware or running customized network protocols. In this paper we describe a light-weight frame-
work for user-level networking that runs on generic hardware and does not require any modifications
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Figure 1: System overview

to the existing network protocols. The main advantages of our framework are its simplicity and
low amortized overhead. Our approach is based on the notion of virtual network interfaces that
isolate access to physical interfaces from user applications. A virtual interface is defined using two
bitmask patters that describe incoming and outgoing packets. Using these patterns, an efficient
demultiplexing algorithm dispatches packets received from the physical network interface directly
into user applications. The network protocol stacks are implemented entirely in the user space.

The rest of this paper is organized as follows. We discuss related work in section 2, we describe
our framework in section 3, and we evaluate it in section 4.

2 Related Work

The earliest approaches to user-level networking focused mostly on the flexibility and ease of
implementation for new network protocols rather than performance. They usually provided built-
in packet filtering languages [12, 11] or allowed user processes to register custom packet handlers in
the kernel to filter the incoming traffic [19]. Some of these built-in languages were later optimized
using dynamic code generation [20, 7].

In the high-performance computing area, user-level networking was used as a mechanism to
eliminate the kernel from the critical path when sending or receiving network packets. The main
challenge in these approaches, apart from maximizing performance, was to provide user isolation
and security. Most proposed solutions either relied on custom communication protocols, such as
Active Messages [19], Fast Messages [13], and BIP [14], or required packet tagging [18]. Other high-
performance solutions relied on specialized hardware [17, 5]. These later approaches eventually lead
to a standard, the Virtual Interface Architecture [6, 4], which defined a set of hardware functions
needed to support secure and efficient user-level network interface access.

A large research effort was devoted into designing packet classification algorithms for applica-
tions such as routing, admission control, intrusion detection, and traffic accounting [8, 10, 15]. It
was shown that the complexity in a general packet classification problem grows exponentially with
the number of packet classification rules and thus the search space might become extremely large
even for moderate rule sets. Most state-of-the-art algorithms address the classification problem
by constructing decision trees that allow packet processing with a minimum number of memory
accesses. Due to the search space explosion, such decision trees often require very large amounts
of memory [15]. Our approach is closer to the PathFinder [2] and the Tuple Space Search [16]
algorithms which use bitmask patterns and hash tables and typically require much less memory.

A separate approach to couple the network protocol stack with the application is to use a virtual
machine such as Xen [3] or KVM [9]. Typically, the hypervisor provides to each guest system a
virtualized network interface which either has its own unique MAC address and is bridged to the
physical interface or has the same MAC and IP addresses as the physical interface and is multiplexed
using Network Address Translation (NAT). The main disadvantage of these approaches compared
to our model is that the hypervisor and the guest operating system add a significant overhead and
complexity to the user application.
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struct Packetdigest{
struct{ /+* Ether x/
uchar src[6];
uchar dst [6];
uchar type[2];

b
union {
struct{ /+* IPv4 x/
uchar src [4];
uchar dst [4];
uchar proto[1];
/* TCP or UDP x/
uchar sport [2];
uchar dport [2];
}s
struct{ /* ICMP x/
uchar type[1];
uchar code[1];
}s
struct{ /+* AoE x/
uchar major [2];
uchar minor [1];
uchar tag [4];
}s
}s
}s
struct Packetpattern {
struct Packetdigest mask ;
struct Packetdigest value ;
s

Figure 2: Sample packet digest definition in the C language

3 System Model

An overview of our networking framework is shown in figure 1. Every physical network interface
(NIC) is associated with a collection of wirtual interfaces (VIF) which allow user processes to send
and receive packets. Typically, network protocol implementations generate a virtual interface per
each communication endpoint such as a TCP or UDP socket. A virtual interface consists of two
bitmask-value patterns, which describe the packets that the interface is allowed to transmit and
receive, and a kernel-level queue for incoming packets. The purpose of the bitmask-value patterns
is twofold: to verify packets generated by processes and to demultiplex incoming traffic. We also
envisage that virtual interfaces will enable the kernel to control the network resource consumption
by users processes. For example, the kernel could divide available bandwidth between virtual
interfaces according to some policy or provide low-latency network access to real-time processes.

In order to send a packet, a user-level network stack generates all packet headers (including
data layer) and passes the packet payload together with the headers to the kernel. The kernel
verifies that the packet matches the allowed pattern and attempts to transmit it. If the NIC
is busy, the packet is appended to the driver’s transmit queue. Normally, patterns for outgoing
packets are not allowed to overlap so that processes cannot interfere with each others traffic. If
a process attempts to register a virtual interface with a pattern overlapping with another virtual
interface, which might for example happen if the process tries to open a connection on a port used
by another process, the kernel returns an error.

When an incoming packet is received from hardware, the packet filter compares the packet
headers with the bitmask-value patterns defined in the virtual interfaces and selects the virtual
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Figure 3: Sample packet digest and bitmask-value patterns

interface that receives the packet. If a user process is already waiting for a packet from the selected
virtual interface, the kernel delivers the packet directly to the user-space network protocol stack.
If no process is waiting for the packet, the kernel enqueues the packet in the virtual interface.

3.1 Packet filtering

Network access control and traffic demultiplexing is performed using a data structure called packet
digest which contains all the fields extracted from packet headers that are relevant for packet
filtering such as protocol types, source and destination addresses, and port numbers. Figure 2
shows a sample packet digest format in the C language. Since the digest structure is shared by
all protocols it contains a union of alternative fields at each protocol layer. Only the data layer is
fixed (Ethernet in the discussed example) since it is usually NIC-specific.

Each virtual interface defines two packet patterns: for incoming and outgoing packets. Each
such pattern is a pair of packet digest structures, where the first structure is interpreted as a binary
bitmask and the second is the corresponding binary value. Note that bitmask-value expressions are
sufficiently flexible to represent common pattern types such as exact values for fields and subfields,
wildcards (i.e., zeroes in the bitmask) and prefixes (particularly useful for IP subnets). Arbitrary
ranges (e.g., port ranges) can be represented by converting them to sets of prefixes.

In order to verify if a packet matches a bitmask-value pattern, a digest is first generated from
the packet by extracting relevant fields from the packet header. Since lower-level protocol headers
always define the type of the higher-level protocol header such a digest is always unambiguous. A
packet digest D matches a bitmask-value pair (B, V) of some virtual interface if D & B = V where
& is a bitwise AND operator. Again, note that although the packet digest structure contains a
union of overlapping fields, packets sent by different protocols (and hence using different fields in
the header) always differ in the type field of the lower-layer protocol and thus the bitmask matching
algorithm always classifies them correctly.

In order to dispatch a packet received from hardware to a virtual interface, the packet filter
generates a packet digest and iteratively tries to match it against receive patterns of all virtual
interfaces associated with the NIC. The first virtual interface that matches the digest receives the
packet. If no pattern matches the digest, the packet is dropped (see figure 3).

In a simple system configuration virtual interfaces belonging to the same NIC should not have
overlapping patterns. If for some reason processes need to create interfaces with overlapping receive
patterns, for example to express some complex filtering rules, the packet filter must know the order
in which these patterns are applied. If an incoming packet matches multiple virtual interfaces, the
first matching interface receives the packet. Optionally, the packet filter may copy the packet and
deliver it to multiple matching interfaces, which allows implementing tools such as network sniffers.

Note that an alternative packet filter design is possible where packet digests are not generated
but instead mask-value pairs are directly applied to the packet headers. However, packet headers
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Figure 4: Packet filtering using hash tables

normally contain many fields that are not relevant for packet filtering and thus their comparison
would require unnecessary memory accesses. In a typical packet digest definition, such as the one
shown in figure 2, a packet digest occupies less than 32 bytes of memory and thus a bitmask-value
comparison can be performed by fetching one cache line on most modern architectures. Further,
some protocols have variable-length headers (e.g., options) that cannot be classified using simple
bitmask-value expressions. On the other hand, generating packet digests requires the kernel to be
able to parse protocol headers. We assume though that the kernel needs to have some protocol-
specific knowledge for fairness and security reasons.

3.2 Optimizations

The packet demultiplexing algorithm described above requires matching an incoming packet digest
with the patterns of potentially all virtual interfaces associated with the NIC. Hence, the algorithm
has a linear complexity with the number of virtual interfaces.

One way to improve packet demultiplexing efficiency is to sort the virtual interfaces on the NIC’s
list based on the number of packets they receive. The packet filter could for example increment
a counter in a receiving virtual interface each time it forwards a packet. Occasionally, the packet
filter would also re-sort the virtual interface list based on these counters. When processing an
incoming packet, the packet filter would then try to match against interfaces that are most likely
to receive the packet, increasing the probability of a hit. Given that traffic distributions are often
very skewed, such an optimization could yield in a constant amortized filtering time for packets
that match interface patterns. However, for packets that do not match any virtual interface (and
are thus discarded), the packet filter would still have to iterate over all interface patterns before
making a decision and would thus require linear processing time.

Another optimization is based on the observation that many virtual interfaces are likely to have
exactly the same bitmasks. For example TCP/IP connections are distinguished by the source and
destination TP addresses and source and destination port numbers. Thus, all virtual interfaces
corresponding to TCP/IP connections generate the same bitmasks but differ in the associated
values (i.e., different port numbers or IP addresses). In order to forward packets efficiently, the
packet filter could group all virtual interfaces that share the same bitmask and store their values
in a hash table. When processing a packet, the packet filter would calculate the digest, apply a
bitmask, calculate a hash from the masked digest, and perform a lookup to check if any value
associated with the bitmask matches the digest (see figure 4). Given a sufficient number of bins in
the hash table, this filtering method would allow packets to be processed in a constant time per
protocol bitmask.

However, pattern matching using hash tables has one limitation. If patterns are allowed to
overlap, the order in which patterns are applied to packets may be relevant for the filtering se-
mantics. Grouping patters together using hash tables may thus affect this order. For example,
consider a sequence of three patterns that need to be matched in the following order: A, B, and
C. Suppose that patterns A and C have the same bitmask and are inserted into a hash table. In
such a case, it is impossible to preserve the original pattern matching order because either an A-C
hash table lookup is performed before applying pattern B, in which case packets matching both
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Before hashin After hashin

Trace Rules Bitmasks Vah%es Bitmasks Valgl;les Packets
acll 751 79 1,246 81 1,250 8,140
acll 100 98 28 129 28 129 1,000
acll_10K | 9,603 109 12,931 109 13,044 97,000
acll 1K 916 68 1,222 68 1,222 9,380
acll 5K 4,415 98 6,109 99 6,139 45,600
fwl 269 221 914 644 3,623 2,830
fwl 100 92 173 302 185 381 920
fwl 10K | 9,311 238 32,136 382 998,366 | 93,250
fwl 1K 791 224 3306 263 3,420 8,050
fwl 5K 4,653 235 15,778 359 22,751 46,700
ipcl 1,550 244 2,180 624 8,329 | 17,020
ipcl 100 99 54 145 55 146 990
ipcl 10K | 9,037 310 12,127 388 16,027 90,640
ipcl 1K 938 186 1,223 190 1,251 9,380
ipcl 5K 4,460 276 5,916 311 8,430 44,790

Table 1: Traces used in the experiments

B and C may be classified incorrectly, or pattern B is matched before the hash table lookup, in
which case packets matching both A and B may be classified incorrectly.

A solution to this problem is to explicitly add filtering rules for packets that match multiple
patterns. In the example above, one could add a new pattern, applied first, for packets that match
both A and B. The packet filter would then apply pattern B and at the end it would perform a
lookup in the A-C hash table. This solution increases the total number of patterns but it preserves
the original filtering semantics.

3.3 User-Kernel Transition

In order to achieve high throughput, the networking code should avoid unnecessary packet copying.
While the implementation of the protocol stacks in our framework is entirely application dependent,
it is an interesting question whether the kernel can avoid packet copying when sending and receiving
packets from the user space. In principle, the kernel can translate the virtual address of the user-
space outgoing packet to (possibly multiple) physical addresses and pass them to the NIC for
transmission. For security reasons, it might copy the packet header so that the user is not able to
modify it. However, some networking cards have limitations on the memory buffers they can use.
For example, some NICs can only access a subset of host’s memory due to addressing limitations,
or have restrictions on the buffer alignment, or do not have a scatter-gather capability and can only
transmit packets that are contiguous in the physical memory. If the networking card has one of
such limitations, the user either has to allocate packets in a special way (e.g., by asking the kernel)
or the kernel has to copy the packet from the user space to a kernel buffer before transmission.

Delivering an incoming packet from the kernel space to the user space without copying is
even more problematic. Theoretically it can be done by changing the virtual memory mapping
in the receiving process. However, virtual memory can only be modified at a page granularity.
If the receiving process requests the packet to be delivered to a specific buffer, both the buffer
and the packet payload must be aligned on a page boundary. In order to assure such a packet
payload alignment, the kernel would need to know in advance the header length of the packet it is
going to receive from the network. We are currently investigating whether it is possible to control
incoming packet alignment by assigning MAC addresses or VLAN identifiers to data-intensive
network protocols.
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Figure 5: Average packet demultiplexing time

4 Evaluation

In order to get a preliminary feedback on our framework’s feasibility, we implemented the bitmask-
based packet filtering algorithm on Plan9 and fed it with traces of packets and filtering rules
obtained from a public trace archive [1]. The traces contain three classes of rule sets: Access
Control Lists (ACL), Firewall rules (FW) and IP Chains (IPC) summarized in table 1. Columns 2
and 3 show the number of unique bitmasks and values produced from each rule set. Note that due
to the range conversion the number of bitmask-value patterns is usually higher than the number
of rules in the trace. Furthermore, the number of patterns is increased by the hashing algorithm
(columns 4 and 5) which creates new filtering rules for patter intersections in order to preserve the
original rule matching order. For some rule sets the number of extra patterns is notably high.

We ran our packet filtering algorithms on an AMD K10 Opteron machine on a single 2.2 GHz
core. We first read all the packets from the trace to the main memory and then measured the
total time needed to classify all packets. Figure 5 shows the average packet filtering time using a
linear pattern matching algorithm and a hash table based algorithm. Clearly, in most cases the
hash table optimization improves performance. For most traces, the average packet filtering time
is on the order of microseconds. Given a packet size of a few kilobytes, this would allow filtering
traffic of approximately one gigabyte per second per core or equivalently 10 gigabits per second
per core. Since our prototype is not aggressively optimized (e.g., we do not use SIMD instructions)
the throughput may potentially be improved by a more efficient implementation.

5 Conclusions

In this paper we argue that for future applications it will be advantageous to run network protocol
stacks in the user space. Many-core machines will need to be able to dispatch incoming packets as
quickly as possible to the receiving application cores to maximize performance. We describe a sim-
ple user-level networking framework which requires only very limited protocol-specific knowledge
in the kernel and allows running entire network protocol stacks in the user space. Measurements
on an experimental prototype show that our approach is viable.
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ABSTRACT

We have developed jtagfs, a protocol stack and filesystem which
enables live debugging of an ARM machine using acid. It accesses the
hardware through a JTAG interface, providing new ways of debugging
which dissolve the boundaries between the kernel, user space and the
loader and gives direct access to the hardware. At the same time acid
provides high level abstractions to interpret the results and automate the
debugging process.

Introduction

JTAG is a standard for boundary scanning, a method for testing digital circuits by means
of a shift register (boundary scan shift register or BSR). The BSR is used to drive the
inputs and outputs of different parts of the circuit. On each subcircuit the BSR is con-
trolled by a TAP (Test Access Port), used to transverse the states of the BSR on each tick
of the clock, load it and set its connections to the pins, input and output values of the
circuit. On complex digital circuits, like a microprocessor, the BSR can be used to con-
trol separately and test different subcircuits by feeding it different chains (a sequence of
bits).

While debugging some drivers in the Sheevaplug, it came to our attention that the ARM
cores have a well documented JTAG interface [10]. Furthermore, the chains to control all
of the models are very similar, with only small differences between them. The micropro-
cessor includes a TAP controller and some extra debugging hardware as part of the
macrocell called Embedded ICE [6] or Embedded ICE-RT [7] depending on the particular
model. The JTAG interface provides access from an external external machine to differ-
ent parts of the microprocessor. Through JTAG the debugger can make the processor
enter debug mode, write directly to the processor registers, inject instructions with full
access to the hardware and restart the processor no matter its state. Furthermore,
some machines like the Sheevaplug contain a chip which in addition to providing access
to the serial port on the machine has a subcircuit able to interact with the TAP con-
trollers on the board and the microprocessor, making them accessible through USB.
This chip, called AN2232C-01 [4], is a command processor which can drive any kind of
serial interface (act as an MPSSE or Multi-Protocol Synchronous Serial Engine). It can also
work as an MCU host bus emulator. We will be using it as an MPSSE, so we will just call it
MPSSE from now on.
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All this capabilities mean that with the appropriate software it is possible to debug the
kernel having facilities akin to that available on special development boards while at the
same time running regular production kernels. It is even possible to debug simultane-
ously the kernel, user space and the loader, vanishing the frontiers and providing full
access to the hardware. The problem is that the appropriate software did not exist. The
software we have had access to has some limited debugging capabilities through gdb or
direct access to the hardware. Porting existing software to Plan 9, while being more
complicated than writing it from scratch would have been not enough because of the
dependencies with gdb and its lack of generality in the interfaces it offered. Leveraging
on [14] and with an approach similar to rdbfs(4) [11] but with a twist, we have devel-
oped a general purpose a complete programmable debugging interface for the ARM
machines, providing full access to the hardware.

JTAG basics

Each JTAG capable device has a number of TAPs connected in series or in parallel. Each
TAP normally has four inputs, TCLK, TMS, TDI and TDO, connected as is shown in Figure
1.

DR

\L .

|
I

v

B

i
DTl

I TMS TCLK TDO

11

Figure 1: jtag enabled device

On each TCLK down edge the system may shift the value in TDI and shift out the value
to TDO depending on the state of the state machine of the TAP, depicted on Figure 2,
with the transitions controlled by the value in the TMS input. There are two shift regis-
ters normally connected in parallel, the data register (DR) and the instruction register
(IR). The DR is the BSR, and the IR controls what happens. Which of them is connected
to TDI and TDO depends on the state of the TAP controller which also sets when the
instructions or the data start being active and connected to the chips or the output pins.
TAP controllers can be chained in series, with the data registers and the instruction reg-
isters concatenated. There is an instruction to disable a controller which can effectively
turn off one controller so that data can be shifted in separately.
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Figure 2: JTAG TAP state machine, input is TMS

Sometimes controllers are also chained in parallel where there are different chains and
an instruction is used for chain selection. For example this approach is taken by the
ARM to select between the different circuit modules. Each chain provides a length for
the instruction register and the data register.

The instructions supported by the IR may vary among models with some of them being
mandatory. For more details on this, see the JTAG [10], though the details of what is
implemented and what instructions are supported are actually detailed in the ARM man-
uals.

The instructions supported by all ARM machines are (there are some minor differences
in semantics):

¢SCAN_N is used to input a chain number.

oINTEST is used to set the chain number input with SCAN_N.

«IDCODE is used to detect the chip and puts a special ID value in the DR.
*BYPASS disables the TAP, putting a 1 bit shift register between input and output.
eRESTART restarts the processor after it entered debug state.

Architecture of jtagfs
Figure 3 depicts the architecture for the jtagfs.

The first part which needed to be implemented was the access to the MPSSE in the FTDI
chip. There was already partial support for the FTDI chip in usb/serial(4) (for more
details see [12] and [1]). We completed the support for the FTDI configuration protocol,
but kept the MPSSE support itself outside of it. The usb/serial is already compli-
cated enough. We set the usb serial chip with the minimum possible configuration (set
the interface to be MPSSE and the latency timer) and made it serve a file called jtag
which serves as conduit to communicate through it. The jtagfs uses this file to send
commands to the MPSSE.
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Figure 3: Jtagfs architecture

The next level of abstraction is the JMedium, a data type and a set of operations which
abstracts the details of the driver for the JTAG. For now, we use an MPSSE implementa-
tion for the JMedium, but others may be implemented in the future. Using it, we just
drive the TDI, TDO, TMS with respect to the TCLK. The interface uses buffering and
takes in account there may be more than one TAP connected in series, though all but
one (the current TAP being drived) are disabled.

We also wrote a state machine driver, which given an origin state and a destination state
calculates the minimum distance path between them. Given the number of states, a
static table could be precalculated to do this when compiling, but it was not done for
simplicity, given that most of the time is spent waiting for the USB communications any-
way.

The next level is the ICE chains layer, which takes care of the strange bit endianness of
the JTAG chains on the ARM (some of the chains are bit order inverted and byte shuf-
fled), and converts between that endianness and the local (debugger) machine byte
order.

Built on top of the ICE chains, there is a level which interacts with the ARM processor,
making it enter and exit debug mode, saving and restoring the registers and injecting
instructions.

Finally, a proc(3) interface exports the processor registers in a manner similar to
rdbfs(4). A small library for acid and a little modification to attachproc in the
mach(2) library to make the kernel registers file, kregs, writable makes it possible to
switch modes and manipulate the processor at will from acid.
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Driving the MPSSE

The MPSSE itself is quite a complex device which can drive any kind of serial interface.
It is programmed through a small machine language which can output bits in different
bit endianness, driving TMS, TDI and TDO on down or up TCLK edges. We started out-
putting the machine commands directly, but, specially while debugging it was quite
complex to keep track of all the details of the MPSSE. We ended writing a small assem-
bler for the MPSSE instructions, which we called ma and assembling them on the fly. Ma
is a good name because we will never really have .m object files (for which the letter m
is already taken), so there will not be another assembler with this name, at least in
kencc. An example of the instructions can be seen next:

DatalIn EdgeDown LSB 3

DatalIn EdgeDown LSB B3

DataOutIn EdgeDown EdgeUp LSB 3 0x42 0x34 0x56
DataOutIn EdgeDown EdgeDown LSB 3 @
DataOutIn EdgeDown EdgeUp LSB B3 0x42
DataOutIn EdgeDown EdgeDown LSB B3 @
TmsCsOut EdgeDown MSB BOx7 0x7

TmsCsOut EdgeDown LSB B7 0x7
TmsCsOutIn EdgeDown EdgeUp LSB BOx7 0x7
MCURd 0x34

WaitIOHigh

AdaptClkDisab

Div5ClkEnab

Loop

SetBitsL 0x32 0x34

MSB and LSB mean most and least significant bit first, BNN means a number of bits
(whereas the count by itself means a number of bytes) and @ is used as a parameter
when assembling on the fly as a placeholder for the data (passed as another parameter).

Assembling on the fly has proved to be a very good approach for debugging and testing,
providing a low level sniffing interface. In the first prototype, we hardcoded the values
using constants and some functions. Each time we found a bug in our interpretation of
the MPSSE instructions, we had to fish bugs on every place where they happened. Also,
the assembler itself may be useful for other applications using this chip for driving other
(for example SPI) interfaces.

ICE chain support

There are several chains on each ARM machine, which provide access to different capa-
bilities of the chip. There are minor differences among them, and some of the chains are
present on some chips and not on others. We have interacted mainly with three chains.

Chain 1, is used to inject instructions to the ARM core. Special care needs to be taken
with the clock. Basically, when the processor is in debug mode (which is when an
instruction can be fed to the core) it runs on a slower clock. As a consequence, when-
ever an instruction to interact with external hardware, like RAM or a peripheral, needs to
be executed, the processor must run it using the faster clock. Then it falls back to the
slow clock driving the debug mode.

Chain 2, is used to access the debug registers, most of which can be accessed normally
from inside the core. This registers enable hardware vector catching (enter debug on an
exception, including reset), breakpoints (entering debug mode based on an address
being executed) and watchpoints (entering debug mode based on an address being read
or written) and instantly entering and exiting debug mode.
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While chain 1 and chain 2 are well documented and seem to be the same on all the lat-
est ARM cores, Chain 15, which provides access to the MMU, seems vary more from
model to model. From what we have seen, there are two families of ARM with respect of
Chain 15, the ARM 7 family and the ARM 9 family. In any case, we could not made
Chain 15 work on the feroceon, so instead we have pushed MCR and MRC instructions.
This approach is more portable and without any drawbacks. Using them we added the
MMU state to the observable state of the processor. This state is read only at the
moment, though this can change in the future.

ARM interaction

The ARM processor interaction code has two different levels. For example, there is a
function, ARMgofetch used to inject an instruction into the core. This instruction is
pushed into the pipeline and goes through the five states (fetch, decode, execute,
access an writeback). At this level, one has to be careful what state the pipeline for the
instruction is for. To abstract the pipeline we wrote some other functions (for example
ARMgetexec and ARMsetexec ) which shift in the instruction, inject NOPs and read
and write the data when the pipeline is in the right state. They also make sure that after
the pipeline is full until the instruction finishes.

We found that the litmus test to find whether the whole system works is if the processor
is able to run again after going into debug mode. All the context for the Arm needs to
be perfect. In this respect, we found two difficulties while implementing jtagfs. The
first one is that even if the PC does not need to change, the processor will not start if
the register is not written to. The second difficulty, is that interrupts need to be dis-
abled while in debug mode. If they are not disabled, bad things will happen. An inter-
esting consequence of this is that if while in debug mode something improper is done,
like access a non mapped address, when we start the processor again, an interrupt will
fire that will most probably crash the system.

Endianness

Endianness in the JTAG is tricky. There are two interfaces, the proc(3) on one side and
the JTAG on the other side and both need to be honored. The proc(3) interface should
be in ARM endianness (little endian on Plan 9), whereas the JTAG has special bit order-
ing, which is different for every chain, but at the same time the little endianness of the
ARM needs to be respected. The approach we have taken is that the registers, which
need to be modified by jtagfs are translated to host order at the interface ( proc(3) and
chain interface). On the other hand, other data passes through without going into host
order.

Filesystem

The standard proc filesystem is used to export processes. The model was extended by
rdbfs(4) and the —k flag for acid to provide access to the segments and registers of a
running kernel. Jtagfs extends this model even further, exporting more registers (in
particular exporting the MMU registers) and mapping memory outside of the segments
of the binary.

The MMU registers can be accessed using the regs file, just after the Ureg and float-
ing point registers (if there are any). To take advantage of them, the jtag acid library
uses the undocumented map() builtin for acid to extend the register map. This
approach makes it possible, when the processor is stopped, to access the memory
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mapped MMU registers from within acid.

The other extension implemented is that the acid library also uses map () to extend the
memory mapped for the data segment to all the memory starting from KZERO. This
approach lets us access memory outside the kernel segments, like Mach and the page
tables.

Thanks to these extensions, with very little code, it is possible translate from virtual
addresses to physical addresses by looking them up in the current page table.

Debugging

Debugging the jtagfs was a challenging activity. Running wireshark under linux to
capture the USB dialog of OpenOCD proved invaluable in the first stages, specially to
understand the finer points of the timing of the state machine and bit endiannes which
is unclear in the documentation, even with the application note clarifying it [5].

Another thing we found invaluable was the verbosity flag controlled by a different char-
acter at each level of abstraction, (similar to what the compilers do in Plan 9) with the
lowest printing the MPSSE assembly and the highest printing the ARM context when
entering and exiting debug mode. Jtagfs can print any of its levels of interaction,
which makes it simple to debug new devices and can be interesting for anyone willing to
know more about JTAG on the ARM, which has some dark corners and rough edges (spe-
cially the bit ordering or the timing of the state machine).

Experience

While it is slow when reading or writing big amounts of data, mostly because of the
roundtrip of the USB protocol, it is still quite usable for regular debugging. It could be
made faster by batching together bigger chunks of data or by caching recently accessed
data. Both have important drawbacks, considering that reading and writing may have
ordering constraints (for example when accessing memory mapped devices), which is
why we did not implement them.

Jtagfs has showed its power when using it several times. For example, after pro-
gramming it, we found that just after stopping the core with Plan 9 on it, it would reboot
no matter what we did. After some poking and probing, we learnt that it was the watch-
dog device rebooting the machine when the processor was stopped. Just by writing
some acid code, we were able to to disable and reenable the watchdog as needed.
Another interesting experience was debugging some code for traps that had failed to
work for a long time and we did not understand why. It turned out that in the end we
were using an instruction which was not supported in the machine, but what had stalled
us for days was debugged in a couple of hours using jtagfs.

The most important feature we have missed when using the device are more breakpoint
and watchpoint units, which would make debugging simpler, but this is a hardware
problem outside of our control. The number of units is also dependent on the core.
Software breakpoints in the kernel could be implemented, but with the caches and the
pipelines interactions they would probably be quite a feat to get right.

Related work

There are several programs to interface JTAG providing a backend to gdb, for example
OpenOCD [2] or the Blackfin Uclinux gnu toolchain [3]. There are also developer boards
and closed software like that of [9]. All of them, or at least the ones we have seen and
used, provide at most batch-like capabilities (whereas acid and proc combined provide a
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fully programmable interface). Furthermore, the proc(3) interface is designed to be
portable so it can be easily used from any other programming language and operating
system, providing a simple portable interface, whereas the interfaces provided by pro-
grams like OpenOCD (OpenOCD provides a gdb commands telnet server) are designed
to be used with gdb and not as general.

Future work

As it is now, jtagfs only provides Feroceon support and has only been tried in the
Sheevaplug. Support has been added for the Armada, but is untried. Most of the soft-
ware should work without modification on any ARM 7 or 9 as it has been written to be
very portable. To support other boards the id code for the processor needs to be added
and the configuration necessary to deal with the wiring of the board.

After the Sheevaplug has been running for a short period of time, the JTAG interface
stops responding unless it has already been accessed, though this looks like it is a char-
acteristic of the hardware and the same happens to OpenOCD on Linux. In any case,
when the JTAG does not respond, it is detected in the identification phase and it can still
be reset through the JTAG interface. As long as there is some interaction with the JTAG
(it can be only to identify it) early in the boot process, the JTAG works flawlessly.

There are other capabilities of the ARM chips which can be accessed from the JTAG and
which could be interesting. One of them is the Embedded Trace Macrocell or ETM [8] an
instruction and data tracing interface to the processor. Another interesting capability is
the DCC or Debug Communications Channel. It provides three registers to access a
bidirectional serial communications channel (polled or interrupt driven) for printing and
debugging using the JTAG. From inside the processor, the target sees the DCC as the
coprocessor 14 using MCR and MRC. From the JTAG these registers can be accessed by
means of scan chain 2.

Another interesting capability that could be implemented is to freeze the processor from
within the kernel, by setting the debug registers. Then, the hardware could be accessed
from the jtag port using jtagfs. We have not done this, but it should be trivial to do,
as it is just setting a register. One good place to do this, for example, would be in the
panic routine, so that when a kernel panics, it can be inspected.

The JTAG interface could be also used to inject a loader or a kernel as a last resort for a
bricked device or to read or write the contents of the flash.

Last but not least, using /proc and acid any software running on the ARM can be
debugged. It would be very interesting and not very difficult to add more support for
ELF [13] symbol tables and binaries (perhaps using those of plan9ports or go) to Mach.
This could enable debugging the Linux kernel or U-boot using acid.
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ABSTRACT

The 9P file protocol is used for all file operations in the Plan 9 operating system.
Although it is simple and generally effective, 9P tends to show extremely poor perfor-
mance when used to transfer large files over high-latency links, such as the Internet. This
work extends the 9P protocol to introduce the concept of "streams" as used in FTP.

Introduction

The Plan 9 operating system utilizes a single filesystem protocol, 9P, to access all resources on the system,
including devices, the network stack, the windowing system, and the archival backup system. All of these
files are made available by file servers, which are mounted to a namespace at the kernel level and then
accessed using 9P messages [4].

Although 9P has proven a very effective way to deal with local files and files on local networks, in some
ways it is lacking. At its core, 9P operation is synchronous. A message is sent requesting an operation, such
as a read, and the client program must then block until the reply comes back from the server. Every read or
write request must wait for the entire round-trip time (RTT) between the client and the server before the
program can continue. With the rising prominence of the Internet, where latencies of hundreds of millisec-
onds are common, it has become apparent that accessing and transferring files from distant Plan 9 systems
using 9P is extremely slow and inefficient, requiring far more time to complete a file transfer than the more
popular Hyper-Text Transfer Protocol (HTTP) or File Transfer Protocol (FTP). In fact, initial tests indi-
cated that over a connection with 50 ms RTT (relatively low for the Internet), transferring a file took nearly
four times as long with 9P as it did with HTTP.

Where 9P operates in terms of "chunks" of a file, requested and delivered one piece at a time, HTTP and
FTP deal with entire files at once. When a file is requested from an FTP server in passive mode, the FTP
server and the client negotiate a separate, new TCP connection to be used to transfer the file all at once. In
HTTP, when a GET request is sent over the connection, the entire file is returned immediately (although a
specific portion of the file can also be requested, which will also be sent immediately regardless of size)
[5]. Because FTP and HTTP push data directly to a TCP connection rather than waiting for it to be
requested like 9P, they avoid many of the issues of latency.

This work proposes and implements a method for alleviating the latency problems in 9P. The solution,
called "streams" in this text, operates by taking a leaf from FTP’s book: it allows the creation of a new TCP
connection to transfer file data. These streams, made available to programmers through library functions,
can be used in any situation in which sequential reading or writing of a file occurs. Rather than attempting
to improve performance with programmer-transpared adjustments behind the scenes, streams extend the
POSIX-style file I/O API to put explicit control in the hands of the programmer. As the results show, the
introduction of streams to 9P allows Plan 9 to transfer data using 9P just as quickly as with HTTP.
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9P

Files in Plan 9 are served and accessed using the 9P protocol. Client programs, such as cp and ed, access
files using the familiar read (), write(), open(), close(), etc. library functions. The C library
then translates these function calls into 9P messages, which are sent to the appropriate file server. File
servers listen for incoming 9P messages (typically over a network connection or a pipe) and respond to
them appropriately. Only one reply is sent per request.

9P messages come in pairs: a client sends a T-message (such as Tread ), which is received by the server.
The server then responds with an R-message (such as Rread ). A T-message will always receive its corre-
sponding R-message, unless an error occurs, in which case the server will respond with the Rerror mes-
sage. The complete set of 9P messages is shown in Table 1.

Tversion/Rversion | Exchanges client/server 9P version numbers
Tauth/Rauth Authenticates client with server

Rerror Indicates an error (includes error string)
Tflush/Rflush Aborts a previous request
Tattach/Rattach Establishes a connection to a file tree
Twalk/Rwalk Descends a directory hierarchy
Topen/Ropen Opens a file or directory
Tcreate/Rcreate Creates a file

Tread/Rread Reads data from an open file
Twrite/Rwrite Writes data to an open file
Tclunk/Rclunk Closes an open file

Tremove/Rremove | Removes a file

Tstat/Rstat Requests information about a file
Twstat/Rwstat Changes information about a file

Table 1. 9P messages [1].

All connections are initiated with the exchange of a Tversion/Rversion pair. In this exchange, the
client and server insure that they are both speaking a compatible version of the 9P protocol. At the time of
writing, the most recent version was called "9P2000", with an earlier version "9P" long deprecated. If either
the client or the server returns a version that the other does not understand, no communication can be per-
formed. Note that the definition allows extensions to be specified by appending characters to the version
string following a period [2]; for example, "9P2000.L" represents a version of 9P with extensions for
Linux. Anything following the "." is considered optional, thus "9P2000.L" is backwards compatible with
"9P2000".

Once the protocol version has been established, a client typically sends a Tattach message to attach to a
specific file tree. Then, the client is free to Twalk, Tstat, Topen, etc. all over the file tree.

When a user opens a file, the client program makes an open () system call, which is translated into a 9P
message, Topen, which is sent to the file server. The file server responds with an Ropen message when
the file has been opened. The client then sends Tread and Twrite messages to read and write the file,
with the server responding with Rread and Rwrite. When the transaction is completed, the client sends
Tclunk and receives Rclunk in return, at which point the file is closed.
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Streams

The primary reason for the slow performance of 9P over high-latency links is its T-message/R-message
nature. Every read call issued by a program must wait for the entire round-trip time of the connection
before getting any information back. This means that programs end up blocking for a very long time while
messages are sent across the network.

The addition of "streams" is intended to alleviate this problem. Sequential reading of files is very common;
it appears when copying files, playing music and videos, opening a file in an editor, etc. Typically, the pro-
grammer knows when a file will be read sequentially, but with the stock 9P implementation that knowledge
helps little. Streams, on the other hand, aim to provide programmers with a powerful method for quickly
reading in a file sequentially.

The core concept of streams is drawn from the operation of passive FTP. When a client requests a file in
passive mode, the FTP server and the client negotiate over the existing connection to set up a new, separate
TCP connection for transferring the data [3]. The server then simply writes the entirety of the requested file
to the new connection, which the client then reads.

Typically, all 9P messages between a given client computer and its server are multiplexed over a single
TCP connection. This means that multiple programs may all be sending messages over a single connection.
To initialize a stream, a client program sends a Tstream message to the server, requesting a new stream.
The server in turn responds with a Rstream message indicating an IP and port which represent a new,
dedicated TCP connection for transferring a file.

Library Interface

Streams are made available to the programmer through the C library, 1ibc. There are two ways in which
programmers may use streams: in a regular (client) program, or in a file server.

Regular programs such as cp or an MP3 player utilize streams using the library functions stream,
sread, swrite, and routinessclose.These

Stream* stream(int fd, vlong off, char isread)

long sread(Stream* s, void *buf, long n)

long swrite(Stream* s, void *buf, long n)

int sclose(Stream* s)

Table 2. libc functions.

typedef struct Stream {

int ofd; // The underlying file being streamed
int conn; // The TCP connection
char *addr; // The server'’s IP and port
vliong offset; // Current offset into the file
char isread; // Read/write flag
char compatibility; // Compatibility mode flag
} Stream;

The Stream structure

The operation of the functions is very similar to the corresponding functions for regular reading and writ-
ing. The stream function initializes a stream given an already-open file descriptor. It is at this point that
the directionality of a stream (read or write) is determined. The sread, swrite, and sclose functions
all behave just like the corresponding read, write, and close functions already existing in libc.

Since some servers may not support 9P streams, if the creation of a stream fails the functions sread,
swrite, and sclose work in "compatibility" mode, issuing regular reads and writes on the original file
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descriptor.

Streaming 9P Messages

9P servers and the kernel drivers deal with 9P at the level of 9P messages, rather than the POSIX-like
abstractions seen by regular client programs. To implement streaming, two new 9P messages were added,
Tstream and Rstream, which are formatted as shown in Table 3. Numbers in brackets represent field
sizes in bytes.

size[4] Tstream tag[2] fid[4] isread[1] offset[8]
size[4] Rstream tag[2] count[4] data[count]

Table 3. Format of streaming 9P messages.

Each message consists of a string of bytes, with the size defined by the size element at the beginning. The
tag field is common to both messages and is used by the client to identify the messages as belonging to the
same conversation.

The Tstream message specifies an fid, a flag for reading or writing, and an offset into the specified file. An
fid is a 32-bit integer used to identify a specific active file on the file server and is in many ways analogous
to a file descriptor in a user program.

The Rstream message is returned by the file server and contains a network address string in the data field,
the length of which is defined in the count field. The network address is in the format "tcp!x.x.x x!yyyyy",
where x.x.x.x is the server’s IP and yyyyy is a TCP port on the server. This network address is used by the
client to connect to the file server, creating a TCP stream over which file data is sent.

Server-Side Design

Every 9P server program must be modified to support streaming explicitly. When the 9P version is negoti-
ated at the beginning of a session, a streaming-compatible server will report its version as "9P2000.s" rather
than the default "9P2000". As the definition of the Tstream/Rstream messages states, anything in a
version string following a period represents an optional extension to 9P. Thus, a streaming server is still
fully compatible with a client which does not handle streaming, and vice versa.

In general, to add streaming to a 9P server it is necessary to add a new handler for the Tstream message
type. When such a message comes in, this handler (forked off as a new process to avoid blocking) must
begin listening on a new TCP port, then send the server’s IP and the port number back in an Rstream
message. When the client connects to that port, the server then begins reading/writing file data to/from the
connection until either the file is fully sent (in the case of a read stream) or the connection is closed (in the
case of a write stream).

Implementation

The implementation of streams in 9P introduced changes in essentially every level of the system. User-level
functions were introduced into the C library and user programs were modified to use those functions. A
new system call was also added, and streaming support was included in device-specific drivers.

At the lowest level is the driver support. It is necessary for each kernel driver to know how to set up a
stream; a specific function was added to each to request and create a new stream. However, all remote
filesystems are mounted through the devmnt device; the upshot of this is that streams only had to be fully
implemented in devmnt, while other devices could simply have their stream functions return failure, forc-
ing the stream into compatibility mode.

To act as an interface between user-space programs and the device drivers mentioned above, a pstream
system call was added. This system call is called when a new stream is requested by a user-level program.
It does little more than parse its arguments, convert the given file descriptor to an in-kernel channel, and
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then call the appropriate device-specific function based on the location of the requested file. If streaming is
not supported, pstream returns -1.

The C library functions mentioned above were added to the /sys/src/libc/9sys directory. In gen-
eral, these functions were quite simple to implement. The stream function simply creates a new Stream
structure, sets some options, and calls the pstream system call, which returns an IP address and port. The
function then calls dial to open a new TCP connection and returns to the user program. If the remote
server or the device driver is not streaming compatible, pstream will have returned -1, a compatibility
flag is set, and no TCP connection is created.

The sread, swrite, and sclose functions behave "appropriately" based on the status of the stream’s
compatibility flag.

To summarize, a user program calls stream on an open file descriptor to obtain a new stream.

Tests and Results

In order to test streaming 9P, two programs were modified to utilize streaming. The cp user program and
the exportfs 9P server were, over the course of about an hour, modified to support streams. In the case
of cp, the changes totalled about 4 lines; the modified (streaming) version of cp is here referred to as
scp. Modifications to exportfs were slightly more extensive, but basically amounted to making the server
report its version as "9P2000.s" and adding an 80-line Tstream handler function.

A network was set up for simulating the latency of the Internet. As Figure 1 shows, a client machine (
illiac , booting standalone from a local disk) and a server ( p9 , acting as a combined CPU/auth/file
server), both running Plan 9, were separated by a gateway computer ( sigil ) running Linux. This gate-
way was configured to use the netem kernel extensions, which allow the introduction of arbitrary latencies
for network packets passing through the gateway.

Client
(illiac)

Server
(pg)

Gateway

1|1l (sigil

T =

—
J...---- - -...'..L
100 Mbit Oues 10 Mbit
switch — hub

Figure 1. Testing network

A set of tests were devised to find the speeds at which files could be transferred using 9P, HTTP, and
streaming 9P. 10 MB, 50 MB, 100 MB, and 200 M B files were randomly generated, then transferred over
the network via the three different protocols with round-trip latencies of 500 us, 15 ms, and 50 ms.

The server was configured to run the modified (streams-enabled) exportfs server and Plan 9’s HTTP
server. On the client, the server’s namespace was mounted locally using the command import p9 /
/n/p9 , which connected to the server’s running export£fs process.
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In order to transfer a file from the server to the client using streams, commands of the form scp
/n/p9/usr/john/randoml0M /dev/null were issued, using the specially modified streaming cp
program to copy the files. Files were transferred using non-streaming 9P with commands such as cp
/n/p9/usr/john/randoml0M /dev/null, and files were transferred via HTTP with the com-
mand line hget http://p9/randomlOM > /dev/null time command (also present in Unix),
which reports the time required to complete a process. Table 4 and Figure 2 show the resulting transfer
times when no artificial latency was induced, giving an average round-trip time of 500 us. At such a low
latency, the performance of HTTP, 9P, and streaming 9P are essentially identical.

9P (sec.) HTTP (sec.) Streaming 9P (sec.)
File Size (MB) | mean | std.dev | mean | std.dev | mean std. dev
10 1091 0.51 12.66 0.37 12.71 0.31
50 59.21 2.34 62.75 0.33 62.11 0.29
100 126.96 5.72 125.30 0.58 125.58 0.58
200 262.40 0.37 251.41 0.59 251.53 0.87

Table 4. HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 500 us

500 us RTT Latency
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e

Streaming 9P —<—
HTTP —s—

200 r
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Transfer time, seconds
5
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100 120 140 160 160 200

80
File size, MB
Figure 2. HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 500 us
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When the latency was increased to 15 ms round-trip, as shown in Table 5 and Figure 3, regular 9P immedi-
ately fell significantly behind HTTP, while streaming 9P maintained almost exactly the same performance
as HTTP. Differences between the transfer speeds for the two protocols were small enough to be considered
simple experimental variance.
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9P (sec.) HTTP (sec.) Streaming 9P (sec.)

File Size (MB) | mean | std.dev | mean | std.dev | mean std. dev
10 30.85 1.34 14.47 0.55 1441 0.11
50 156.29 2.84 7141 041 7091 0.51
100 319.88 5.8 144 .44 0.50 142.10 1.07
200 647.22 1.87 286.56 2.06 284.60 0.61

Table 5. HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 15 ms

15 ms RTT Latency
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Transfer time, seconds

100

0 2‘[] ﬂ.‘[] 6‘[] EID 1[‘]0 12‘0 1ﬂ‘.0 1!‘30 1éU 200
File size, MB
Figure 3. HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 15 ms

Figure 4 and Table 6 show the results at 50 ms induced latency. As in the previous test, HTTP and stream-
ing 9P took almost exactly the same amount of time to transfer the same data, remaining within a standard
deviation of each other, while regular 9P fell even more behind.

9P (sec.) HTTP (sec.) Streaming 9P (sec.)
File Size (MB) mean std. dev mean std. dev | mean std. dev
10 75.15 041 19.58 0.23 19.88 0.12
50 379.67 2.04 96.71 0.46 96.83 0.66
100 767.93 5.19 193.10 1.40 193.23 0.58
200 1543.12 0.62 385.292 1.85 386.02 1.77

Table 6. HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 50 ms

The final test that was performed checked the concurrency capabilities of streaming 9P compared to HTTP
and regular 9P. The commands that had been used previously, for example time cp
/n/p9/usr/john/randoml0M /dev/null, were followed by an & character, which caused the
command to be executed in the background and allowed for the execution of multiple client programs at the
same time. The Plan 9 OS has a feature which allows a user to enter multiple commands while in "hold"
mode; upon exiting "hold" mode, the shell begins processing all the commands one after another. This
allowed multiple clients to be launched almost simultaneously.

Tests were performed using two, four, and eight simultaneous client programs on the client PC. For the
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Figure 4. HITP vs. 9P vs. Streaming 9P, no induced latency, average RTT 50 ms
test, a round-trip latency time of 50 milliseconds was used with a file size of 10 MB. The execution times
for each instance of the programs were averaged to get the results shown in Table 7 and Figure 5.

Number of Clients | Streaming 9P (sec.) | HTTP (sec.) | 9P (sec.)
2 30.96 28.51 79.75
4 53.28 52.53 100.81
8 104.24 101.93 158.53

Table 7. 10 MB file transfer speeds with multiple concurrent clients, 50 ms RTT
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Figure 5. 10 MB file transfer speeds with multiple concurrent clients, 50 ms RTT

As the results show, all three protocols experienced increased transfer times as the number of concurrent
transfers increased. Streaming 9P and HTTP both showed approximately the same level of scalability
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within the limited confines of this test, with performance decreasing in a slow and linear fashion.

Summary

The addition of streams functionality provides one way in which 9P’s latency problems may be overcome.
By allowing programmers to explicitly indicate that they intend to read or write a file sequentially, stream-
ing functionality is used only where appropriate.

As the results show, the use of streams allows 9P to transfer files at a rate comparable to that of HTTP. The
modifications necessary to enable streaming in a client program are not onerous and can potentially
increase the speed of file operations many times over.

Future work would include the conversion of more user programs and servers to use streams. Any file
server which listens for connections over the network could benefit from the inclusion of streaming capabil-
ity while still remaining backward-compatible with non-streaming clients. Specifically, the disk-backed file
servers Fossil and Venti are ideal targets for streaming. When a Plan 9 system such as a terminal mounts a
root file system, it typically connects to a remote Fossil server; providing streaming within Fossil would
allow users to experience more efficient file access for almost all of their files. On the client side, the image
and document viewers could benefit from streaming file access, as would the MP3 decoder; all of these pro-
grams regularly access large files sequentially.
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ABSTRACT

This paper describes a technique to manage multiple serial devices that switch
data transmission modes between request-response and streaming protocols. It
utilizes the ideas of coroutines and communicating sequential processes to build
concurrent input and output processing routines for each device. The example
program leverages Limbo’s buffered channels to concurrently queue and process
data from multiple inputs in soft real-time.

1. Introduction

Scores of researchers have promoted various structured programming techniques to manage
concurrency over the years. Conway [1], Dijkstra [2], Hoare [3,4], and Kahn and MacQueen [5]
have all contributed to the body of knowledge that frames how concurrent programs are written
today. Yet, even with this history, research, and practice of programming, the processing of
input and output (I/0) continues to be reduced to routines that must run to completion before
another task can continue. This inherent single-tasked nature of handling I/O means that user
programs, especially with graphical front ends, need to investigate concurrent approaches to
managing multiple 1/0 interfaces. For example, reading data from a slow remote device while at
the same time needing to service other input tasks requires managing system state successfully
to prevent blocking conditions from interrupting the logic flow.

Coroutines, coined by Conway and expanded by later researchers, are a proven way to handle
various issues surrounding the logical segmentation of code. The definition, as published by
Conway [1:396], elucidated separability, or modularity:

[The coroutine] may be coded as an autonomous program which communicates with
adjacent modules as if they were input or output subroutines. Thus, coroutines are
subroutines all at the same level, each acting as if it were the master program when in
fact there is no master program.

Leveraging this modularity helps in designing optimal input- and output-handling routines
based on machine or process state at any given time. Though the logic is modularized, state
changes stored by the coroutines do not fully model a concurrent or parallel system as the join
required for two coroutines to exchange data will cause at least one to wait, or block, until the
other is able to send or receive data to the peer (see Knuth [6] for examples).

In order to achieve greater concurrency a mechanism is required to leverage the I/O handling of
coroutines into a more approachable framework. The seminal paper by Hoare [3],
Communicating Sequential Processes (CSP), provides such a framework and influenced the design
of the Limbo programming language. CSP is the mechanism used by Limbo channels to provide
bi-directional communication between processes. Limbo processes are able to run concurrently,
in parallel if the underlying hardware supports it, by leveraging constructs provided by CSP.
Ritchie [7] describes the simplified use of Limbo channels to handle reading data from a single
device. Updates to Inferno and Limbo since Ritchie’s document now include buffered channels, a
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language extension that allows for up to »n buffer size of values to be sent without blocking. This
paper contributes to the available documentation on using Limbo channels to manage concurrent
I/0O tasks.

The final development stage of a new aero-acoustic levitator (AAL) [8] required a program to
interface, control, and display data from various serial devices. Some of these devices use a sim-
ple request-response protocol, whereas others switch from request-response communication to
a streaming protocol. All of the devices operate in modes where sending a request and then
blocking to wait for a response will not suffice, as there are certain conditions where a message
will be sent from the device out of order from a sequential request-response loop initiated by the
user control program. In order to manage these message states, this implementation uses multi-
ple asynchronous processes as coroutines to handle all of the data management and machine
control. The user is presented with a seamless interface isolated from the underlying serial com-
munication tasks.

The following sections present aal/pyro (Figure 1), a Limbo program that uses CSP programming
techniques to manage the 1/0 from multiple devices. The system combines a remote pyrometer
with a linear XY translator, three serial devices in total. The program plots, and optionally logs,
the stream of temperature measurements sent from the pyrometer. Position of the pyrometer is
controlled using the XY translators through numeric key entry and a graphical view that accepts
coordinates converted from mouse input. These tasks are accomplished by building program
structures to handle I/O from the various serial interfaces. The implementation leverages
Limbo’s buffered channels for inter-process communication to control parallel data feeds.
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Figure 1 aal/pyro application

2. Design

The aal/pyro program is a graphics interface that manages I/O from multiple physical devices.
Different serial communications protocols are used to process data from each device. Blocking
conditions common in 1/0 routines are eliminated from the control flow by separating each task
into independent processes (thought of as coroutines). The program manages these coroutines
by communicating through Limbo channels. By isolating the blocking functions into separate
coroutines, the program is able to run seamlessly without interrupting the interactive program
flow. The Limbo alt (alteration) statement [9] is used to manage concurrent communications
between each of the key coroutines that depend on data processing. The alt is like a case or
switch statement but specific for handling multiple communications channels. Thus the program
logic can be declared in simple synchronous terms even while handling asynchronous events.

On startup, the pyro process (Figure 2) spawns off a single timer process as a mechanism to
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signal the pyro process to flush any out-of-sync communications from the XY translator (Zaber).
The timer does nothing until a connection is made to remote devices. The main alt event loop in
the pyro process handles user interaction and drawing routines representing the coordinate
space of the Zaber devices. Plotting and other drawing updates are managed using separate pro-
cesses started after connection to the Exactus pyrometer is made.

aal/pyro
‘ S~

1 NN -

| AN S~

\ ' RS

A
timer Zaber Exactus | » animproc lotscan
reader Reader P P
v i
byte reader animate scanregion

Figure 2 aal/pyro processes

All serial devices have a minimal data structure referred to as a port. For simplicity, each port
can be opened from a serial device file using sys—>open() or via sys—>dial() to connect to a
remote service. The connection routine is itself spawned off from the pyro process so that the
blocking open() or dial() calls do not inhibit other user interface interaction. A message will be
sent over a channel to the pyro process notifying whether a successful connection was made. A
valid connection will enable additional Ul elements and spawn a dedicated process to manage
reading from the device.

Connecting to the Exactus pyrometer starts up a series of other processes. The first is the reader
used to analyze the different input data from the device. The reader spawns off a blocking byte
reader that simply receives all data from the pyrometer serial interface and sends each byte back
over a buffered channel, decoupling the analysis from the physical device. A separate process
group is used for on-screen drawing. The animproc process is spawned after connection to the
pyrometer and plots temperature data using a coordinated animate process. A separate plotscan
process is created by a user-initiated event to plot temperature data in relation to the axial posi-
tion of the pyrometer. Each of the interfaces is declared in its own module as defined in the fol-
lowing sections.

2.1. Zaber

The Zaber XY translators are interfaced via a single RS232 link that communicates with both the
X and the Y linear stage. The serial protocol provides a clean, fixed byte-length message format
for both sending and receiving data. Though the protocol works like a sequential transmit-
response operation, not all commands to the device return a response message. Additionally,
there is no guaranteed order to the responses and there are certain cases where the device
issues state data interleaved between other response messages.

The connection to the device creates an instance of a Zaber port:

Port: adt
{
pid: int;
local: string;
ctl: ref Sys—>FD;
data: ref Sys—>FD;

rdlock: ref Lock->Semaphore;
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wrlock: ref Lock—>Semaphore;
buf: array of byte;

write: fn(c: self ref Port, b: array of byte): int;
}s

After successfully connecting to and opening the device, the pid is set to the process id of the
spawned off reader(). A buffer of received bytes is stored in the port structure. The semaphore
rdlock is used as the bytes buffered in the Zaber reader process are validated and consumed in
the pyro process.

Spawning the reader off into its own process allows the blocking sys—>read() call to continually
read data without interfering with the rest of the application event management. Data received
from the device is stored in a buffer until a subsequent routine polls the buffered data.

reader(p: ref Port, pidc: chan of int)

{
pidc <—= sys—>pctl(0, nil);
buf := array[l] of byte;
for(;;) {
while((n := sys—>read(p.data, buf, len buf)) > 0) {
p.rdlock.obtain();
if(len p.avail < Sys—>ATOMICIO) {
na := arrayl[len p.avail + n] of byte;
nal[0:] = p.avail[0:];
nal[len p.avail:] = buf[0:n];
p.avail = na;
¥
p.rdlock.release();
}
# error, attempt reconnect and try again
openport(p);
¥

The parent pyro process checks for responses using ad hoc interleaves with directed timeouts.
This is accomplished by calling readreply() whenever the parent processes needs to poll data
from the device. Each readreply() call passes a millisecond time out parameter to enable logic
flow to continue if a response has not be received.

The reply may be nil due to a timeout. If the response is not returned, it does not matter to the
rest of the system state as no dependency is based on actual responses unless specifically
requested in another routine. Scanning processes, discussed later, require exact position details
and thus explicitly wait until the proper return has been received.

readreply(p: ref Port, ms: int): ref Instruction
{
if(p == nil) return nil;
if(ms < 0) ms = 60000; # arbitrary maximum of 60s

r : ref Instruction;
for(start := sys->millisec(); sys—>millisec() <= start+ms;) {
a := getreply(p, 1);
if(len a == 0) {
sys—>sleep(1l);
continue;
}
return al[0];

}

return r;

}

Readreply() calls the function getreply() to scan the buffer and check for valid instructions.
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getreply(p: ref Port, n: int): array of ref Instruction

{
if(p==nil || n <= 0)
return nil;
b : array of byte;
p.rdlock.obtain();
if(len p.avail >= 6) {
if((n*6) > len p.avail)
n = len p.avail / 6;
b = p.avail[0:(n*6)];
p.avail = p.avail[(n*6):];
p.rdlock.release();
a : array of ref Instruction;
if(len b) {
a = array[n] of { * => ref Instruction};
for(j:=0; j<n; j++) {
i := al[jl;
i.id = int(b[(j*6)]1);
i.cmd = int(b[(j*6)+1]1);
i.data = b[(j*6)+2:(j*6)+6];
¥
}
return a;
¥

Access to the port available data buffer is coordinated between the Zaber reader() process and
any calls to the getreply() function through the semaphore p.rdlock. The semaphore is used to
insure that the byte reading and message interpretation do not conflict while accessing the
buffer. The getreply() routine obtains the semaphore lock, then checks the length to determine if
a valid message is contained in the data. If the buffer contains enough bytes for n messages, it
will store those bytes and trim the buffer. The semaphore is then released to allow the Zaber
reader process to continue filling the buffer as new bytes are received from the device. This
coordinated hand-off using the readreply() loop means that timeouts can be used while polling
for new messages from the XY translators without blocking the pyro process.

2.2. Exactus

Making the Exactus pyrometer control transparent to the end user is the primary task of the pyro
program. The device is connected through an RS232 or RS422 interface. The AAL connects to
the pyrometer over TCP/IP using a Perle IOLAN SDS as a proxy for transferring the raw bytes to
and from the device. The Exactus uses two serial protocols for normal operation: a request-
response protocol known as Modbus, and a raw byte stream of data termed the legacy Exactus
mode. When in the streaming mode, it is capable of transmitting up to one measurement per
millisecond. Though this rate is not fast by modern computing standards, the mode switching
over the same serial interface defines the way we have to implement the byte reader.

The pyrometer streaming mode leverages buffered channels to send decoded data frames to the
animproc process that is dedicated to converting those data into numerical forms presented in a
graphical view and optionally to a log file. On the one hand, this is no different than storing the
data in a buffer and having another process continually poll for new entries in the same way one
would let the request-response loop manage synchronous communications. But in this case the
reader process isolates the mode switching and continually monitors the input bytes for proper
message structure for both states. The resulting data streams are typed as they are read and
subsequently handed off to the respective end points.
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2.2.1. Modbus

On startup, the pyrometer communicates over its serial link using the Modbus RTU protocol.
Modbus is a communications protocol used by many industrial devices and comes in three imple-
mentations: RTU, ASCIl, and TCP/IP. The Exactus uses a subset of the RTU protocol to read and
write coil and register values on the device. Each message is framed by 3.5-character times of
silence (at 115.2kbps, a 303.819us break between messages). All messages must be initiated by
the aal/pyro program, as it is the master node in the serial configuration. The primary user
interaction that utilizes the Modbus mode is to change the sampling rate, known as graph rate,
and switch back into the Exactus streaming mode during actual data collection.

The Limbo Modbus module has been modeled on the 9P or Styx modules due to its transmit and
response message structure. There are 19 function codes and an error type declared within the
data structure. Unlike the incremental pairing of the T and R types in 9P, Modbus uses the same
function code values when declaring both the transmit and response structures. For example,
the TMmsg structure:

TMmsg: adt {
frame: int;

addr: int; # 1 or 2 bytes
check: int; # 0 or 2 bytes
pick {
Readerror =>
error: string;
Error =>
fcode: byte;
ecode: byte;
Readcoils =>
offset: int; # 2 bytes, 0x0000 to OxFFFF
quantity: int; # 2 bytes, 0x0001 to 0x07DO

Readdiscreteinputs =>
offset: int;
quantity: int;
Readholdingregisters =>
offset: int;
quantity: int; # 2 bytes, 0x0001 to 0x007D

read: fn(fd: ref Sys—>FD, msglim: int): ref TMmsg;
packedsize: fn(nil: self ref TMmsg): int;
pack: fn(nil: self ref TMmsg): array of byte;
unpack: fn(b: array of byte, h: int): (int, ref TMmsg);
mtype: fn(nil: self ref TMmsg): int;

};

is nearly identical to the RMmsg structure for received data. As the TMmsg is requesting data
from a certain register or coil, the return RMmsg message would include the actual results, as in:

Readholdingregisters =>
count: int;
data: array of byte; # registers, N (of N/2 words)

After a process writes a TMmsg, it will block waiting for the reply by calling readreply():

EPort.readreply(p: self ref EPort, ms: int): (ref ERmsg, array of byte, string)
{
if(p == nil)
return (nil, nil, "No valid port");

limit := 60000; # arbitrary maximum of 60s

r : ref ERmsg;

b : array of byte;

err : string;

for(start := sys->millisec(); sys->millisec() <= start+ms;) {
(r, b, err) = p.getreply();
if(r == nil) {
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if(limit——) {
sys—>sleep(5);
continue;

}

break;
} else

break;

}

return (r, b, err);

}

Note the similarity to the readreply() used to access the Zaber devices. Both of these use one
function in a loop to poll the buffer through the getreply() function. By doing so, the developer
can schedule events as needed and continue execution with simple recovery in the case of an
error.

2.2.2. Streaming

The Exactus legacy streaming mode is a setting where the device sends out a continuous stream
of messages at a set rate. The four message types are temperature, current, dual (temperature
and current), and internal device temperatures. The stream contains packets of data messages of
variable length that consist of a header byte defining the type, followed by one or more 32-bit
IEEE 754 binary floating point values. The portion of the packet encompassing the floating point
bytes may include escape codes masking the type and other reserved bytes within the message,
thus creating a variable length packet.

The temperature and current types have a variable packet size of 5-9 bytes, determined by the
escape sequences used in packing the message. The dual and device types packet size is 9-17
bytes in length. The lack of a length attribute in the Exactus message protocol mandates that
each byte received be scanned and evaluated to test for message completion. The data structure
used in Limbo to represent an Exactus message is:

Emsg: adt {
pick {
Temperature =>
degrees: real;
Current =>
amps : real;
Dual =>
degrees: real;
amps : real;
Device =>
edegrees: real;
cdegrees: real;
Version =>
mode : byte;
appid: byte;
vermajor: int;
verminor: int;
build: int;
Acknowledge =>
c: byte;
¥
unpack: fn(b: array of byte): (int, ref Emsg);
temperature: fn(m: self ref Emsg): real;
current: fn(m: self ref Emsg): real;
dual: fn(m: self ref Emsg): (real, real);
device: fn(m: self ref Emsg): (real, real);
acknowledge: fn(m: self ref Emsg): byte;
text: fn(m: self ref Emsg): string;
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There is no hinting for the sampling time from the device; the receiver must calculate the timing
interval based on the receipt of bytes. The timing accuracy depends not only on the resolution of
sys—>millisec() but also on any latency in the receipt of the bytes from the device. Though
latency can be an issue at higher transmission rates, the maximum 1kHz sample rate from the
pyrometer is successfully handled.

2.2.3. Byte stream processing

Switching states between Modbus and Exactus modes requires a slightly more complex process
structure for validating bytes received from the device than defined for the Zaber interface.
Aal/pyro creates a reference EPort to store all of the connection elements:

EPort: adt

{
mode: int; # Exactus or Modbus
maddr: dint; # Modbus address
temp: real; # Last measured temperature
rate: int; # Graph rate
path: string;
ctl: ref Sys—>FD;
data: ref Sys—>FD;
wdata: ref Sys—>FD;
rdlock: ref Lock->Semaphore;
wrlock: ref Lock—>Semaphore;
buffer: array of byte; # bytes from reader
pids: list of int;
tchan: chan of ref Exactus—->Trecord;
ms: int; # ms start of last packet
write: fn(p: self ref EPort, b: array of byte): int;
getreply: fn(p: self ref EPort): (ref ERmsg, array of byte, string);
readreply: fn(p: self ref EPort, ms: int):
(ref ERmsg, array of byte, string);
}s

When a process is spawned off to connect to the device, the path is stored and sys—>dial() is
called. After successfully establishing a connection, the members ctl, data, and wdate are popu-
lated using sys—>open(). The blocking calls sys—>dial() and sys—>open() mean that it is important
for the main loop to have started this connection routine concurrently as to not block any other
elements of the interface or data handling of other I/O components. On successful initialization,
the connection process sends a command back over a channel to the pyro process and then
exits. The notification that the Eport has been initialized updates the interface and spawns off
the animproc process used to plot any data from the pyrometer.

The interesting members of the data structure are the mode, temp, rate, pids, and tchan, as they
are updated based on user interaction controlling the state of the device. Any commands that
read or write value changes must first set the device to Modbus mode before making any further
requests. The device will be switched back to Exactus streaming mode after the sampling rate is
set and data collection is started. The temp variable is used as storage and a lookup mechanism
for the most recently received temperature message from the pyrometer. Rate is a hint field set
when the user changes the graphing and sampling rate of the device. The use of pids provides a
list of subprocess ids to the parent process in case they need to be terminated.

The channel tchan is used when the device is in the streaming mode. When tchan is not nil, then
temperature data will be sent from the reading process to another process that acts as a listener.
This enables the animproc graphing process to be started independently from the reader. When
a frame of data from the stream is available, it is sent over the tchan channel to the animproc
process for handling within the graphics system.

The two processes that manage the Exactus serial communications are a reader() spawned by the
pyro process, and the blocking bytereader(), spawned off by the reader to pick off bytes from the
data stream:
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bytereader(p: ref EPort, c: chan of (int, byte), e: chan of int)

{
p.pids = sys—>pctl(0, nil) :: p.pids;
buf := array[l] of byte;
while(sys—>read(p.data, buf, len buf) > 0) {
c <—= (sys->millisec(), buf[0]);
¥
e <—= 0;
}

The channel chan of (int, byte) is a buffered channel created in the reader process that decouples
the blocking reader from the actual decoder used to validate the data stream. The insertion of
the sys—>millisec() in the tuple is used to mark the receipt time of the first byte that begins a

message. Latency may offset the accuracy, but it does provide a mechanism to represent time
between data messages from the pyrometer.

reader(p: ref EPort)

{
p.pids = sys—>pctl(0, nil) :: p.pids;
c := chan[BUFSZ] of (dint, byte);
e := chan of int;

spawn bytereader(p, c, e);

for(;;) alt {

(ms, b) := <—- ¢ =>
p.rdlock.obtain();
n := len p.buffer;
if(n == 0) {

p.ms = ms; # used in Trecord, track first received
1 : list of byte;
if(p.mode == ModeModbus) 1 = SMBYTES;

else 1 = SEBYTES;
if(!ismember(b, 1)) { # frame error
p.rdlock.release();
continue;
}
}
na := array[n + 1] of byte;
if(n) nal[0:] = p.buffer[0:n];
na[n] = b;
if(p.mode == ModeExactus && p.tchan != nil) {
(i, m) := Emsg.unpack(na);
if(m !'= nil) {
t := ref Trecord(p.ms, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0);
pick x = m {
Temperature => t.temp0 = p.temp = x.degrees;
Current => t.currentl = x.amps;
Dual =>
t.temp0 = p.temp = x.degrees;
t.currentl = x.amps;
Device =>

t.etempl = x.edegrees;

t.etemp2 = x.cdegrees;
*o=>

t = nil;

¥

if(t !'= nil) {
p.tchan <—= t;
if(n > 1) na = nali:];
else na = nil;

p.buffer = na;
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p.rdlock.release();

<-e => # bytereader exited, try again
openport(p);
spawn bytereader(p, c, e);

¥

}

3. Graphical interface

The application has two primary graphical components: a representation of the XY position of the
pyrometer and a temperature plot of data received. The pyro window provides a consolidated
interface into the concurrent processes used to coordinate all of the 1/O from the attached
devices. The user can initiate an additional view that combines the position and temperature
data into a consolidated scan plot. By providing a simplified view on top of the coordinated
coroutines, the pyro process is able to synthesize the translator control and pyrometer data
acquisition into a concise view that hides the multiple processes from the user.

3.1. Translator control

The Zaber XY translators create a 13x13mm region where the pyrometer can be focused. The
data that are returned by the device are in micro-steps and are converted to millimeters for user
viewing and numerically entered changes. There is an additional graphical panel that presents
the position as a reticle that can be moved by a click in the view. The graphical interaction is
managed completely within the pyro main alt loop using the zcmd channel:

c := <—zcmd =>
if(dflag) sys—->fprint(stderr, "zcmd: ’'%s’0, c);
if(!plot.lock) { # max microstep: 131327
(nil, toks) := sys—>tokenize(c, " ");
pnt := Point(int hd tl toks, int hd tl tl toks);
ms real MAXMICROSTEP / real plot.bimg.r.dx();

x1 real pnt.x * ms;
vyl real pnt.y * ms;
zsend(Instruction.newwithval(l, Zaber—->Cmoveabsolute, int(x1l)));
zsend(Instruction.newwithval (2, Zaber->Cmoveabsolute, int(y1l)));

}

The zcmd is a string channel named for use within the Tk graphics system. An on-screen Tk
panel sends X and Y coordinates over the channel. If the panel plot has not been locked by the
user to ignore the commands, then the coordinates will be converted into the micro-steps
required by the translator and written to the device. The function zsend() encodes the instruction
into an array of bytes and writes them to the device in order to move to the assigned absolute
position. A zsend() call is addressed to each translator as they are moved independently. The
Zaber devices will not confirm an instruction until after the physical move has completed. The
return values from the device may be received out of sequence to the calling convention as the
time of travel between positions is the determining factor. There is no requirement to wait for
the return result due to the use of a timer process checking for new queued return values before
updating the display.
The timer process sends a message over tchan once per second. The pyro main alt loop receives
the timeout message over the tchan and processes the event:
<—tchan =>
if(!scanning) {
if(zport != nil)
while((r := zaber—->readreply(zport, 1)) != nil)
processzaber(r);
if(epid > 0) ecmdc <—= PyroPlot—>SAMPLE;
else if(eport != nil)
updatedegrees(exactus—>temperature(eport));
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The scanning check ensures that the pyro process will only poll the Zaber buffer when the
plotscan process is not actively running. Zaber translator messages are processed before
attempting to update an on-screen temperature readout. The channel ecmdc is used to message
the animproc process requesting a new temperature measurement. A response communication
would then update the on-screen temperature. If animproc is terminated, then the epid is set to
zero and a blocking call to the pyrometer is made; this requires the main loop to wait for a return
from the pyrometer before updating the display and continuing to the next instruction.

3.2. Temperature plot

Graphic plotting of temperature data is managed through the animproc process spawned after
successfully connecting to the Exactus device. Commands controlling logging, sampling rate,
and whether or not to plot the data are sent over a channel by the pyro process. The buffered
channel recc, of Exactus Trecord type, is used to receive data processed by the Exactus reader
while operating in streaming mode:

Trecord: adt {

time: int;
tempO: real;
templ: real;
temp?2: real;
currentl: real;
current2: real;
etempl: real;
etemp?2: real;
emissivity: real;
pack: fn(nil: self ref Trecord): array of byte;

unpack: fn(b: array of byte): (int, ref Trecord);
};

The Trecord is created by parsing values sent from the Exactus stream data. The time field is the
milliseconds from the beginning of a log of the data. Logging to disk will use the pack() function
to create the binary data written out to a filesystem.

Starting animproc will in turn spawn off another process to manage the actual drawing routines.
This new process, animate, receives real values over another buffered channel:

animate(top: ref Tk—->Toplevel, p: ref Plotter, c: chan of array of real)

{
for(;;) {
data := <—c;
if(!p.paused)
p.mavg = update(top, p, data);
I
¥

All screen drawing is buffered in a fixed-length array of real values before being sent to the
animate process. The effect of this buffering is to allow the graphical plot to always present at
least one minute of historical data. The generated plot point is an average of all the buffered
data points; this works well for the full spectrum of graphing rates available from the Exactus
pyrometer.

3.3. Scanning

During the course of a levitation experiment, it is important to verify that the pyrometer is
focused on the sample in order to acquire the best temperature reading possible. In order to
accomplish the optimal focusing of the pyrometer, the XY translators are used to scan a region in
one dimension while simultaneously collecting temperature and position data. The scanning rou-
tine requires all of the prior 1/0 related functionality in order to accomplish its task in the pyro
application.

Scanning is handled by spawning off a dedicated plotscan process to create and control a new
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window where a plot is drawn showing position on the X axis and temperature on the Y axis. The
creation of a plotscan process sets up the window and spawns off a separate short-lived process
to move the XY translator and return temperature data for graphing:

¢ := chan[8] of (int, int, real);

comp := chan of int;
spawn scanregion(rect, c, comp);

The scanregion process calculates new positions to move the translator and sends command
messages in a loop to make the move occur. At each position a temperature measurement is
made and the resulting data is sent over a buffered channel, ¢, back to the plotscan process
where an plot will be rendered on the display. Once the scan completes, a final message will be
sent to move the pyrometer back to the starting position. The scanregion process will then send
a message over the comp channel and promptly exit.

All other aal/pyro processes continue to run and update their graphical components while the
scanning is taking place. Once the scanregion process has exited, it is possible for the user to
click on the graphic temperature plot to move the pyrometer to a better centered location. The
user may then repeat the process to verify optimal pyrometer placement during the experiment.

4. Conclusion

System development can be difficult enough without having to worry about 1/0 blocking a pro-
cess or threaded programs causing a deadlock. This example detailed how coroutine and CSP
models can be used to successfully manage multiple devices by isolating the I/O handlers. The
decoupling of the blocking sys—>read() call, when managed with Limbo channels, can be a useful
tool for separating out components of a program to process 1/0.

Learning to leverage Limbo channels for inter-process communication may be a foreign idea
when coming from other programming languages. Though channels behave like pipes in Unix,
the ability to create typed data and easily pass it between processes enables the model to work
quite well for concurrent programs. The implementation uses this feature to create independent
byte stream readers that gracefully handle serial protocol changes while continually consuming
input from external devices.

There are areas where this model could be improved. For one, the reallocation of the buffer
array used to store bytes from the input stream can be optimized. Implementing a new data
structure to eliminate the semaphore locking could facilitate programming logic simplification.
For now, with the constraint of the serial line transmission speeds available to the remote
devices, the system performs well enough to capture transmissions from the pyrometer at its
maximum rate of 1kHz.

The Limbo source is available upon request from the author.

# wc results:

1103 3215 21536 exactus/exactus.b
196 578 4055 exactus/exactus.m
1143 3775 27058 modbus/modbus.b
248 787 5897 modbus/modbus.m
424 1276 8449 zaber/zaber.b
104 248 1944 zaber/zaber.m
1515 5351 41132 aal/appl/pyro/pyro.b
365 1035 9056 aal/appl/pyro/pyroplot.b
29 72 556 aal/module/pyroplot.m

5127 16337 119683 total
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Appendix: Work In Progress

The WIP session included the presentation and discussion of the following works:
e A Bluetooth Protocol Stack for Plan 9, by Richard Miller

e A Plan 9 C Toolchain for the Altera Nios2 Processor A Plan 9 C Toolchain for
the Altera Nios2 Processor, by Richard Miller

e New file system proposals, by Francisco Ballasteros, Sape Mullender,
Latchesar lonkov, and others.

* Dfs - A WebDav filesystem client, by Steve Simon
e Wsys(4): hosted window system, by Jesus Galdn Lopez

This appendix includes the submitted abstracts for the WIP session.

59



60



A Bluetooth Protocol Stack for Plan 9

Richard Miller

miller@hamnavoe.com

ABSTRACT

The Bluetooth family of communication protocols is similar in function to
TCP/IP, but different in character. Intended for low power, short distance
point to point radio communication between pairs of devices, with links
set up (at least initially) with human intervention, it has no multi hop
routing, no message broadcast, no domain name or address resolution; it
does have a trusted device model established by a one time "pairing"
operation. Unlike TCP/IP, in which the higher protocol layers are typically
implemented in software on top of a primitive hardware link layer of sim-
ple datagram operations between hardware addresses, Bluetooth chips
act as "black boxes" which establish and maintain high level multiplexed
connections between multiple devices, presenting a complex command
and event interface to the host OS which requires a 1,420 page specifica-
tion to describe.

In spite of these differences, the Plan 9 network abstraction is sufficiently
general for a usefully large subset of Bluetooth to have been incorporated
in a fairly straightforward way, simply by extending /net with a new pro-
tocol directory /net/bt, supported by the new btfs synthetic file
server running as a user level process. With no changes whatsoever to
the kernel or to C library routines such as dial, announce, and
listen, it is possible, for example, for a Plan 9 machine to share its file
system with another via Bluetooth using this pair of commands, on server
and client respectively:

aux/listenl bt!*!42 /bin/exportfs

import —A bt!001122334455!42 /n/blue
A small change to the connection server cs(8) allows the use of a more
"friendly” device name in place of the hexadecimal Bluetooth device
address.

Some of the Bluetooth "profiles" (standard services which can be provided
over a Bluetooth channel) can add useful functionality to Plan 9. For
example, the HID (human interface device) profile is a minor variation of
the USB HID specification, so that changing a few lines of source code in
the USB keyboard and mouse driver usb/kb has made it work with Blue-
tooth keyboards and mice. A simple command-line client for the OBEX
(object exchange) protocol has been written, to fetch or send single sin-
gle files between a Plan 9 machine and a Bluetooth-equipped phone or
other device. A future project is to write a file server implementing the
OBEX FTP protocol, which would allow a Plan 9 machine and Bluetooth
phone to browse each other’s file system.
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A Plan 9 C Toolchain for the Altera Nios2 Processor

Richard Miller

miller@hamnavoe.com

ABSTRACT

The Nios2 processor is a "soft CPU" which can be instantiated as part of a
user-designed system-on-chip on Altera’s Field Programmable Gate
Arrays (FPGAs). It has a simple RISC architecture, with a range of imple-
mentations of varying size and complexity. The tiny Nios2 /e fits in <700
Logic Elements (a typical FPGA will have tens or hundreds of thousands of
LEs) by omitting luxuries like hardware multiply and divide instructions,
memory caches, MMU, and user/kernel mode. The (relatively) high per-
formance Nios2/f adds all these features with a 6 stage execution pipe-
line incorporating dynamic branch prediction and more, to occupy about
3000 LEs. Between them is the Nios2/s, a compromise between size and
speed.

In a recent project | adapted the Inferno emulator for the Nios2, running
on top of the POSIX compatible eCos operating system. This was useful
as a platform for writing demo and test programs for a client’s rapidly
evolving FPGA-based hardware prototype. However the hosted imple-
mentation was unsatisfactory in some ways: the extra and largely redun-
dant operating system layer used a lot of resources on a small chip; the
gcc compiler used with eCos is unwieldy and its generated code is not
particularly good. Therefore as a step towards native Inferno on the
Nios2 (and perhaps eventually Plan 9 as well), it seems worthwhile to
retarget the Plan 9 C compiler toolchain for this processor.

Using the existing MIPS toolchain as a starting point, to date I've pro-
duced a compiler, assembler and linker (nc, na, and nl) for the maximal
Nios2/f, and added instruction disassembly routines to the 1libmach
library. Future work includes software emulation of the missing integer
multiply/divide instructions for the Nios2/e, and emulation of double pre-
cision floating point (the Altera cores support only single precision) and
64 bit integer operations for all processors.
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IX: A file protocol for NIX
WIP

Francisco J. Ballsteros

ABSTRACT

It is common to use Plan 9 file servers through slow network connections. Tools
like CFS, OP, and others try to help there. But it would be desirable to be able to work
from remote terminals suffering poor-latency links, keeping coherency with a main file
server when feasible, yet being able to work disconnected when there is no other way. IX
is a protocol designed to connect a caching file system client with support for discon-
nected operation to a remote file server. At present it is still work in progress. The imple-
mentation is included in the distribution for NIX.

Problem statement

We have been using the Octopus Protocol, OP [1], to connect to Plan 9 file servers over high-latency net-
work links. But, while this protocol makes it feasible to operate on remote file servers with better perfor-
mance than 9P, there are still problems:

o There is no support for conditional retrieval of file contents. Caching clients might require to retrieve
a particular file only if its own cached version is out of date.

o There is no support for moving a file within the file hierarchy kept in the server without forcing the
data to pass through the client.

. Coherent operation can be improved. There is a coherency window but the protocol does not make a
distinction between device files and regular files (such as those provided by fossil).

The first issue is serious for clients that support disconnected operation, because they have, by definition, to
be aggressive regarding data caching. The second issue is an optimization, but is important because the dif-
ference in performance may be significant, and it is not unfrequent to move files among different directo-
ries within the file server. The third issue is critical if the protocol must be able to operate on remote name
spaces.

IX design

IX is built by leveraging what we learned from Op, the existing code-base for 9P, and ideas as discussed
previously in the community [2]. The protocol is built upon a few design guidelines:

. The underlying transport is a reliable, ordered, connection—similar to a TCP stream—, with flow
control for network congestion.

o An RPC in the protocol is a series of elementary transactions. Such transactions are similar to 9P
requests.

IX is built upon the concept of connection channels. It is extremely cheap to build or dismantle a channel,
so that it is reasonable to create one for each RPC. Channels are duplex, and inherit the reliability and
ordering properties from the underlying transport. A single connection is multiplexed among multiple
channels so that there is no starvation for sending or receiving through them.

An IX client would create a new RPC by just creating a channel. This does not require communica-
tion with the peer, and is a local operation. Then, one or more transaction requests would be sent through
the new channel. The last one is flagged to indicate that the channel write direction can be closed when the
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request has been sent. Only the client can allocate new channel identifiers, which are local to the connection
being multiplexed.

An IX server receives requests through allocated channels and processes sequentially all requests for
a given channel. It ceases to process them when one fails or when one is flagged to be the last one. What-
ever happens first.

Note that channels are different from 9P tags. Like tags, they identify a particular outstanding RPC,
so that multiple RPCs may be in transit at the same time. But, unlike tags, channels permit huge amounts of
data to be sent (concurrently with requests for other channels) and each direction in the duplex stream can
be closed independently.

Once a client has sent the desired transaction requests through a channel (or perhaps concurrently
with them), a client receives through that channel individual replies for all transactions sent. An error reply
to a transaction indicates that the RPC is finished, and the channel is closed.

To identify files, IX relies on fids and gids, similar to those in 9P. But, unlike in 9P, the server
defines which values are to be used for new fids. The client has to keep its own data structures for files,
which means that it has no advantage by selecting fid numbers. On the other hand, the server might exploit
fid values to improve the data structure used to keep and look up fids.

Because a channel implies a context for individual transactions, it is feasible to simplify 9P transac-
tions for use in IX to avoid unnecessary duplication through the wire. For example, once a fid has been
established for an RPC, it is not necessary to repeat its value for each following transaction. The set of sim-
plifications made is described in the next section.

To support aggressive caching, a conditional transaction has been added to the set of 9P requests
known by IX. This transaction, Tcond, asks the server if a piece of metadata for a file is the same, greater
than, less than, or different than the given value. The same relational operation can be performed for multi-
ple elements of the stat information for a given file. If the condition holds, the server replies with an Rcond
reply. Otherwise, the server replies with an error indication; Thus, terminating the RPC.

IX Requests
Using the syntax of intro(5) for 9P, this is the set of transactions known to IX:

Tversion msize[4] version|[s]
Rversion msize[4] version[s]
Tauth afid[4] uname[s] aname [s]
Rauth agid[13]

Rerror ename [s]

Similar to version, auth, and error messages in 9P.

Tattach afid[4] uname[s] aname [s]

Rattach fid[4] qid[13]
Similar to 9P’s. But here the reply carries a value for the resulting fid. That fid is assumed as context for
further transactions in the same RPC.

Tfid f£id[4] cflags([1]

Rfid

Defines fid as the fid to use for following transactions in the RPC. Also, this request can set or reset two
different flags for such fid: OCEND and OCERR. Both are used to automatically clunk the fid. The former
upon reaching the end of file on read transactions, the latter upon errors in the RPC.

Tclone cflags([1]
Rclone newfid[4]

Similar to the clone request in the original 9P. Unlike in that, the client only specifies flags for the new fid
(see the previous request) and the server decides on the value for the new fid. Note that, as in many other
transactions, the fid to use (to clone in this case) must be defined by previous requests in the RPC.
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Twalk wname [s]
Rwalk wgid[13]

Similar to the walk request in the original 9P. The implicit fid is walked to the given name.

Topen mode [1]

Ropen gid[13] iounit [4]

Tcreate name[s] perm([4] mode[1]
Rcreate gid[13] iounit [4]

Similar to 9P’s counterparts, but using a implicit fid value. In particular, create would walk the implicit fid
to the created file, and open it, when successful.

Tread nmsg[4] offset[8] count [4]
Rread count[4] data[count] may be repeated

The read request exploits that requests are sent through channels. It permits specifying a maximum number
of replies for the request. Each single reply may contain no more than count bytes. This grants the server
rights to stream replies up to a given limit. Also, a side effect of the reply is that it may clunk the fid if it
was OCEND.

Twrite offset[8] count[4] datalcount]
Rwrite count [4]

Similar to 9P’s write.

Tclunk
Rclunk
Tremove
Rremove

These requests do not need any fields (other than their types), because the fid is implicit.

Tstat
Rstat stat[n]
Twstat stat [n]
Rwstat

In these, an extra bit is used in the qid type, indicating if the file is (part of) a device. Such files should not
be cached at all.
Tcond cond[1] stat[n]

Rcond

The cond request converts IX requests into a microlanguage capable of making decisions. Here, cond is a
relational operator and stat supplies one or more non-null fields for file metadata. The server is expected to
apply the relational operator to each non-null field, and reply with Rcond only if the condition holds in all
the cases. Otherwise, the server replies with an error indication: false.

Tmove tofid[4]
Rmove

Moves the file identified by the implicit fid to the directory identified by fofid, if permissions permit.
Should the name have to change, a separate Twstat request must be issued.

Examples

This is an example retrieval for a file:
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-ch0->
| cho->
<-cho-
<-cho|

-ch0->
-ch0->
-ch0->
-ch0->
-ch0->
| cho->
<-cho0-
<-cho-
<-chO-
<-cho-
<-cho0-
<-cho-
<-choO-
<-cho-
<-cho0-
<-cho-
<-cho|

Tversion msize 8192 version ’ix’

Tattach afid -1 uname nemo aname main

Rversion msize 8190 version ’ix’

Rattach fid 0 gid (0000000000000054 692693930 d)

Tfid £fid 0 cflags 0

Tclone cflags 3

Twalk wname acme.dump

Tstat

Topen mode 0

Tread nmsg -1 offset 0 count 8190

Rfid

Rclone newfid 1

Rwalk wgid (0000000000efd4d2 100

Rstat stat ‘acme.dump’ ‘nemo’ ‘nemo’ ‘nemo’
Ropen gid (0000000000efd4d2 100 ) iounit 0
Rread count 8185

Rread count 8185

Rread count 8185

Rread count 8185

Rread count 946

Rread count 0 '’

Note that sending a Tcond request before the Tstat request in this example might change the dialog so that
data and metadata would only be retrieved if, for example, the qid path or version had changed with respect
to the ones given in Tcond.

As an example of how the implementation for a client might look like, this is an excerpt from the
client being used for testing:

ch = newch(cm) ;

xtfid(ch, rootfid, 0); /* 0 == it’s not the last request */
xtclone (ch, OCEND|OCERR, 0);
for(i = 0; 1 < nels; i++)

xtwalk (ch, els[i], 0);
xtstat (ch, 0);
xtopen (ch, OREAD, O0);

xtread(ch, -1, OULL, msz, 1); /* 1 == it’s the last request */
/* fid automatically clunked on errors and eof */
fd = -1;

if (xrfid(ch) < 0){
fprint (2, "%s: fid: %r0, a);
goto Done;
}
if (xrclone (ch) < 0){
fprint (2, "%s: clone: %r0, a);
goto Done;
}
for(i = 0; i1 < nels; i++)
if (xrwalk (ch, nil) < 0) {
fprint (2, "%s: walk[%s]: %r0, a, els[il]);
goto Done;

68



if (xrstat (ch, &d, buf) < 0){
fprint (2, "%s: stat: %r0, a);
goto Done;

}

if (xropen(ch) < 0){
fprint (2, "%s: open: %r0, a);
goto Done;

}

offset = OULL;

dof{
m = xrread(ch) ;
if (m == nil){
fprint (2, "%s: read: %r0, a);

goto Done;

}
nr = wdata(fd, m->io->rp, nr, offset);
offset += nr;
freemsg(m) ;

}while (nr > 0);

Done:
/* the channel is deallocated by now (a last request was sent and
* a last reply was received

*/

Implementation status

A server that exports its own namespace has been implemented for NIX. A client for testing that performs
operations on a single file is also implemented. The actual caching client with support for disconnected
operation is still under construction. See the nix distribution for access to the source code.

References
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wdfs — A WebDav filesystem client

Steve Simon

ABSTRACT

The design and implementation of a WebDav filesystem client for
plan9 is described together with current and possible future changes to
improve its performance.

1. Introduction

There was a flurry of excitement about WebDav ! in the late 1990s with the hope that it
would become a standard for remote web authoring, and, with the addition of DeltaV?2 ,
version control. It has since been widely implemented it has seen use as a more general
remote file access protcol in some areas; A WebDav server is even available on plan9
using the Pegasus HTTP server.

WebDav uses an extension of the HTTP protocol to send small XML snippets sepcifying
the transaction(s) required, thus any plan9 WebDav impmentation will need an XML 3
parser.

1.1. XML parser

A DOM model XML parser was written for another project and adapted to the needs of
parsing a network stream. DOM model parsers read an XML file into linked data struc-
tures in memory and need only one pass over their input.

The parser is complete and stable. The XML parser accepts standard entity references,
PCDATA, attributes and values, and preserves the element hierarchy. Comments are
elided and there is basic support for XML namespaces. It does not currently support
CDATA or attempt validation against a schema or DTD.

The DOM model allows simple traversal of the hierarchy but puts large demands on the
malloc library for its data structures.

Experience has shown that if attribute names and values are held in a reference counted
tree and string heap respectively this problem can be minimised. This is not done in
wdfs as the xml snippets are never big enough to warant the optimisation.

2. Webfs extensions

Webfs , the plan9 HTTP client application, had to be modified in several areas to support
WebDav:

e Support the new WebDav message types

e Expose more HTTP header information

e Improve webfs’s authentication coverage (digest added so far)
e Support chunked encoding, used by many WebDav servers

Every attempt was made to do this in a sympathetic manner but it is still not clear
whether the design of webfs as a seperate application rather than a library is the correct
way to proceed.

71



3. 9P file server

A fairly traditional multithreaded file server was written based on the lib9p library in the
plan9 distribution, this part of the system presented little difficulty.

4. WebDav protocol variations

As wdfs was tested against more servers it soon became apparent that the WebDav pro-
tocol is not as detailed as one might like. Simple attributes may be supported differently
on each server - for example a readonly flag on a file, and others only appear when the
server is in a specific mode (MicroSoft™ SharePoint). As a result wdfs always provides a
reasonable minimum feature set - reporting file ownership, readonly flags and, last
access times - adding other metadata where available.

The most disappointing variation was the inability of some servers to support GET or
PUT methods with a range specification. The the entire file must be transfered as a com-
plete file read-ahead or write-behind. Though this improves overall throughput it
increases latency making simple edits on large files painful. Furthermore there does not
seem to be a way to detect reliably whether this feature is supported or not.

As we pay such a penalty missing this feature on some servers a command line option is
available to enable partial writes or reads (using a range specifier) where they are known
to be available.

5. Performance enhancement

The performance of webfs can appear fair for local file servers or dreadful for remote or
slow ones, there are several reasons for this.

RTT
Large round-trip times slow remote filesystem response. One obvious solution is
to merge regests where possible, somthing the protocol allows. A simple imple-
mentation would be to send a 9p walk request as a single transaction - implement-
ing the walk() interface to lib9p rather than walk1().

Read-ahead
Read-ahead could be used to asynchronously transfer more of a files contents
when only a small amount has been requested in the traditional manner. This is
already performed to the extent of rounding up transfers to 8Kbytes and serving
reads from a local buffer. This technique could be extended to requesting a direc-
tory scan of the terminal directory of a walk, in the hope that it might be needed.

gzip content-encoding
Currently compressed encoding schemes are not supported by webfs , these could
improve response when faced with low bandwith connections, though this is less of
a problem these days and so it was not considered a priority.

Persistent HTTP connections
Currently webfs does not support persistent TCP sessions, thus there is the signifi-
cant TCP setup and teardown time cost to each transaction.

So far only an experimental volatile metadata cache has been written. This stores only
the results of walks and directory scans. This simple step provided a significant improv-
ment to the perceived performance of webfs . The cache uses a published heuristic
which attempts to reduce the chances of entries becomming stale.* .

6. Applications

Wdfs has found some unexpected uses in daily life. It becomes a readonly SVN client for
plan9 - a WebDav server is part of every SVN installation and experience has shown it is
generally enabled.
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Venti score storage - several cloud storage providers,>: ¢ offer WebDav to access their
storage, and even allow users free access to a few Giga bytes. The author uses one of
these to keep his venti scores.

Two other mildly amusing tools have also spun off from this work: an XML re-indenter,
and an xml to flat file converter; similar to the linux application xmlI2(1).
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Wsys(4): hosted window system

Jesus Galdn Lépez
yiyu.jgl@gmail.com

ABSTRACT

Wsys(4) is a program which serves a 9P file system similar to the union
of rio(4) and draw(3) . Its interface is similar to rio(4), but wsys
windows are created in a host system, ie. they are X11 windows in Unix
(the only existing implementation for the moment). Using wsys, the
window manager of the host system can be used to manipulate windows
running applications on the hosted system, instead of simply emulating a
screen in a single window. Wsys is built on top of some Inferno libraries
and takes some lessons (and many lines of code) from the X11 version of
p9p’s devdraw(1l).

1. Introduction: hosted drawing devices

9vx, drawterm and hosted Inferno all share the need of a drawing device in the host sys-
tem. This device needs to communicate with the host windowing system (X11, Win-
dows, Cocoa) and serve a 9P file system. Mouse and cons devices (pointer and
keyboard in the case of Inferno) need to read events from the host system and, again,
serve some files. A similar function is performed in Plan 9 by rio(4) , which serves
files equivalent to those of the native devices to every window (except draw(3) , which
multiplexes itself).

In a hosted system (9vx, drawterm, emu), mouse, keyboard and drawing devices are
implemented as part of the kernel. Slightly different versions of the same code are
included in each of these programs. This code includes some portable libraries and also
a system dependent part. Bugs propagate at different rate than bugfixes and it is diffi-
cult to keep the all the versions in sync. Additionaly, in the case of X11, multithreaded
applications can be problematic. As a result, it is more convenient to run the X depen-
dent code in a different process. This solution is put in practice in p9p, which uses
devdraw (1) to interact with the host window system.

A similar approach is taken by wsys(4) although, contrary to devdraw(1), wsys
does not use a custom protocol. Instead, it serves a 9P file system similar to the one
found in rio(4) . Figure 1 shows how wsys(4) runs together with a hosted system
taking the role of some kernel devices.

2. Wsys

When run, wsys posts a handler to a 9P server (by default in $SNAMESPACE, as p9p
and libixp do), or optionally listens from a port. Mounting it is analogous to mounting
the wsys service provided by rio(4), with the particularity that windows are not cre-
ated in an application window or a terminal screen, but in the host window system.
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Figure 1. In a hosted system (drawterm, 9vx or Inferno) kernel devices contain system dependent code
which communicates with the host window system (Xlib code in the case of the X11 version). Wsys(4)
offers a similar file system from a different process which lets hosted applications to use windows in the
host system through a 9P connection. As a result, the code dependent on the host window system can be
taken out of the kernel

Most of draw(3)and rio(4) applies to wsys. When mounted, a new window is cre-
ated and an entry is added to the wsys/ directory common to all the clients. Files in
draw/ or the device and ctl files (cons, mouse, wctl, label, snarf, ...)
work as expected. However, there are a few differences.

Wsys runs on the host, so it cannot create or finish processes on the hosted system.
For example, when mounted from 9vx, wsys cannot create new processes inside 9vx,
or kill any process when a window is closed. Creating new processes is actually not
essential, because the method used by window —m is enough to use wsys. The kill
file, discussed later, is used for process termination. As an additional utility, wsys is
distributed with a wctl rc script which can be run from 9vx or drawterm to provide a
wctl service, and be able to use window without the —m flag.

Another difference with rio is that wsys, when mounted with the attach specifier /,
will not create a new window. In this case, a different file system is served, consisting on
the wsys/ directory with subdirectories for each open window, the common draw/
directory (without new file), a snarf file, and a kill file. Reading the kill file
blocks until a window is closed, and then returns the pid given in the attach specifier
when that window was created. This file is read by the wctl script to kill processes of
deleted windows. The snarf file, which is usually associated with the mouse in Plan 9,
is served from wsys without being associated to any window. This is so in case some
program (for example, the plumber) is interested in accessing the clipboard without hav-
ing to create a dummy window.

2.1. Implementation

Wsys is built on top of existing technologies. Very few code had to be written from
scratch. It includes some bits from Inferno, some bits from p9p (most of them from
devdraw), some from rio, some from 9vx, ... The result of this combination is actually a
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quite simple program, which is modular and portable, and does the job for which it was
created.

Wsys makes use of a few Inferno libraries: 11b9 provides the basics, while 1ibdraw,
libmemdraw and 1ibmemlayer are responsible of drawing on memory regions pro-
vided by the system dependent code. These libraries are also part of emu and, there-
fore, have already been ported to a number of systems and are well tested.

Libninep is the library responsible of serving the 9P protocol. This library is in fact an
extended version of 1libstyx(10), included with Inferno. Libninep adds to
libstyx out of order requests, binding at the file tree definition level, and more con-
trol to process requests without using helper functions.

The only version of wsys available for the moment runs on top of X11. The Xlib depen-
dent code has been mostly taken from p9p’s devdraw, but also from Inferno and 9vx.
The non-portable code is clearly separated from the rest, in order to make porting to
other systems easier.

The rest of wsys is some code from rio for managing windows and a bit of glue to
keep all the parts together.

3. Status and further work

Wsys is still evolving, but it already is in a quite usable state. However, it will not show
all its potential until there are versions for other systems. Once OS X and Windows are
supported, wsys could replace a big amount of code in Inferno, drawterm and 9vx.

For the moment, the X11 version of wsys still have some problems: resizing can leave a
window blank, the keyboard can fail when going back and forward of fullscreen mode,
exiting programs do not always delete the window... These bugs are not frequent, but
they can happen.

Nevertheless, wsys can be used with 9vx or drawterm with reasonable success. With
the help of the wctl script the usage of wsys feels very natural from the point of view
of both the Unix host and the hosted Plan 9 sytem.

Inferno applications do not usually speak 9P directly with devices, and instead they use
wm(1l) . However, wsys can be used, for example, to launch several wm instances in
different windows:

; mount —-Ab ’'#U*’ /tmp/ns.$user.$DISPLAY/wsys /dev
;owm/wm &

Other possibilities are to use Inferno as a drawterm replacement using wsys and
9cpu, or to use wsys in an Unix system to run applications from a hellaphone in X11
windows, for example.

Plan9port also includes code to deal with the host window system, but it cannot directly
use wsys, since it currently uses its own protocol instead of 9P. Several solutions are
possible, but none of them has been tried yet.
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