

Jtagfs: Acid your ARM

Gorka Guardiola Múzquiz
Lsub, Rey Juan Carlos University

IWP9 2012

Intro: JTAG
! JTAG: architecture to test digital circuits
! JTAG support on μprocessors

– Freeze the μprocessor, do anything to it, start
it again

– Like debugger but for μp
! All ARMs have JTAG support
! Many machines include: JTAG to USB chip

What I wanted JTAG for
! Had rewritten assembler for exceptions
! Could not figure out what was wrong
! A lot of people where having ARM hw

debugging problems

JTAG basics
! Shifting registers: shift a chain of data in/out
! Two main registers

– Data (DR)
– Instruction (IR)
– (there are some others, BYPASS...)

! Five cables, data in (TDI), data out (TDO), clock
(TCK), Test Mode Select (TMS), reset (TRST)

! TMS: transverse the state machine
! Registers + Signals = TAP (test access point)

JTAG basics

JTAG basics

JTAG basics
! TAPs: serial or in parallel
! Serial means all the chains are longer
! Parallels means they need to be selected

– Chain identifier
– Chain selection instruction

JTAG state machine

On each TCLK, TMS is read and the state updated

JTAG state machine
! Select, Capture, Shift, Update
! Select, connect TDI, TDO
! Capture means read from pads
! Shift is shift in data on each clock
! Update actually make the data shifted count

– DR: put it in the pads, make it work
– IR: make the instruction “run”
– Depends on current instruction, see core

manual

JTAG s.m driver
! Two parts
! An abstraction, JMedium
! A general state machine navigator

JTAG s.m. driver JMedium

Struct JMedium{
 int (*regshift)(JMedium *jmed, ShiftTDesc *req, ShiftRDesc *rep);
 int (*flush)(void *mdata);
 int (*term)(void *mdata);
 int (*resets)(void *mdata, int trst, int srst);
 int (*rdshiftrep)(JMedium *jmed, uchar *buf, ShiftRDesc *rep);
};

! Has buffering (quite important) implemented by flush() and term()
! Resets to set trst and srst, both signals

connected with a circuit, need to know details
! Regshift, rdshift, main functions to implement

! ShiftRDesc useful for async replies rdshiftrep()
! Response comes in nbytes (last partially filled), nbits (byte partially filled)

JTAG s.m. Driver
! Uses shortest path (BFS, small branching

factor)
! Only need to tell it register, data, operation, fill

in a ShiftTDesc, ShiftRDesc to read response
req.reg = TapDR;
req.buf = data;
req.nbits = 5;
req.op = ShitPauseIn|ShiftOut|ShiftNoCommit;

! Only one active TAP, the rest in BYPASS

JTAG s.m. Build your own
! To implement regshift, JTAG state navigator,
! tap.[ch]
! Tell it the state, gets you there, shortest path

– pathto()
– movepath(), concatpath()

MPSSE
! USB: too much latency
! Small processor on the machine
! You download data with instructions
! MPSSE: Multi-Protocol Synchronous Serial

Engine, made by FTDI
! General USB to any kind of serial.
! Can act as a small PIC
! Makes you coffee (almost)

MPSSE

MPSSE
! Each port connected to a serial interface

(different USB endpoints)
– Serial
– Jtag

! Two parts, serial communications, PIC
! In usb/serial only serial communications
! Jtag directory like any other serial port (for

now already configured, parameters are
different)

! Programming, controlling, outside of usb/serial

MPSSE
! Complex to program
! Several “addressing modes”, clocking...

– Shift bits, shift bytes, little bit-endian, byte-
endian, edge, level...

! Difficult to debug
! Wrote mini-assembler, assemble on the fly
! Can print mini-assembler to know what is

going on

MPSSE assembler (ma)

DataOutIn EdgeDown EdgeUp LSB 3 0x42 0x34 0x56
DataOutIn EdgeDown EdgeDown LSB 3 @
DataOutIn EdgeDown EdgeUp LSB B3 0x42
DataOutIn EdgeDown EdgeDown LSB B3 @
TmsCsOut EdgeDown MSB B0x7 0x7
TmsCsOut EdgeDown LSB B7 0x7
TmsCsOutIn EdgeDown EdgeUp LSB B0x7 0x7
MCURd 0x34
SendImm
WaitIOHigh
AdaptClkDisab

MPSSE
! Using the assembler implemented a

Jmedium
! Could be improved, just good enough
! The assembler can be used independently

for other MPSSE endeavours
! The JMedium completely abstracts the

MPSSE

ARM ICE
! Defines several chains (like parallel TAPs),

instruction to select them (IR)
! Chain 1: inject instructions
! Chain 2: access to debug registers
! Chain 15: access to MMU
! The endianness of bits is particularly weird

– Functions to pack, unpack
– mini-language was an overkill, undone

! Chain 15 is different in ARM 7 and ARM 9 (we
are using MCR and MRC and Chain 1)

ARM ICE: Chain 1
! To inject instructions to a core in debug

mode
! When on debug mode: processor on a

different clock, isolated
! To read memory or access peripherals must

go back into real clock
! Inject directly into pipeline (be careful to flush

after you, injecting NOPs)

ARM ICE: Chain 2
! Access debug registers
! Can be accessed also from inside the core
! Can stop the core, start the core, set

watchpoints, breakpoints, etc.
! Only one breakpoint, watchpoint in the

Sheeva, more would be better

ARM context
! Save state of processor before debug mode
! Careful when restoring it after, very delicate
! The PC and other things are modified by

injecting instructions
! Depending on where and how we entered,

need to go back differently (calculate PC and
set interrupt flags mainly)

/proc interface
! Endianness of interface, like in ARM
! Translated to host of jtagfs after reading
! Similar to rdbfs
! Need to be able to write on some of them
! We export more registers (the mmu registers)
! Offer access to memory out of segments of

the binary, MACH, mmap'd registers

ACID Library
! Abstract common operations
! ACID is best for this
! Can set watchpoints, reset to debug, etc.
! Needed to remap the things out of the binary

– Undocumented map() function
! Able to stop the watchdog, amazing
! Can stop the processor, ask for MMU

translations

Jtagfs debugging
! Quite difficult, many layers
! Having debug flags to have each layer print,

very useful
! Many corners, bit endianess confusing and

even wrong in some documents
! Best documentation, OpenOCD+wireshark
! When getting out of debug mode, if PC is not

set, the machine is frozen
! Jtagfs can be used as documentation/to learn

Experience
! Good for debugging
! Found my bug, one of the instructions was not

supported in this ARM (store in the other
stack)

! Could use more breakpoints/watchpoints
– Are software breakpoints doable?

! Slow (not for debugging, but other purposes),
– Could use DCC, multi-instruction inject

Portability (debuggee)
! Add a SOC, add CPUID, SRST/TRST circuit,

extra serial TAPs to ignore
! Only one watchpoint/breakpoint, could be

changed
! All ARM 7, ARM 9 should work
! Add medium, as explained above (other JTAG

controllers)

Future work
! Only Feroceon (in Sheeva) tested

– Bug: unresponding if too late (hw?, OpenOCD too)
! Added support for Armada, untested
! ETM support (traces), other chains
! Setting debug mode in panic (port-mortem inspection)
! DCC, Chain 2, inside coprocessor 14, MCR, MRC
! Loader (maybe using DCC, small assembly program)
! Acid a linux/U-boot (/proc works) with some more ELF

support for the symbol tables
! Multi-ICE support (multicore)

Further in the Future work
! You can stop the processor, do anything to it,

start it again
! Migration of the state of the processor, virtual

hardware machines
! Debugging of loader+kernel
! Hot patching of the kernel
! Education
! The limit is the imagination

Related work
! OpenOCD and similar:

– Adapt to a regular debugger like gdb, not really
programmable

– Can write batch scripts for OpenOCD but limited
too, cannot access symbols, etc.

– OpenOCD: ported to any debuggee
! Hw+Sw debug solutions: expensive, unavailable
! Others: similar to OpenOCD or very limited

capabilities
! /proc + acid + verbose flags = unique
! Closest is rdbfs, but can do much less

Questions?

