Jtagfs: Acid your ARM

Gorka Guardiola Muzquiz

Lsub, Rey Juan Carlos University
IWP9 2012

Intro: JTAG

» JTAG: architecture to test digital circuits
 JTAG support on pprocessors

- Freeze the Uprocessor, do anything to it, start
it again
- Like debugger but for pp
* All ARMs have JTAG support

 Many machines include: JTAG to USB chip

What | wanted JTAG for

» Had rewritten assembler for exceptions

* Could not figure out what was wrong

* Alot of people where having ARM hw
debugging problems

JTAG basics

« Shifting registers: shift a chain of data in/out
 Two main registers

- Data (DR)

- Instruction (IR)

- (there are some others, BYPASS...)

* Five cables, data in (TDI), data out (TDO), clock
(TCK), Test Mode Select (TMS), reset (TRST)

e TMS: transverse the state machine
* Registers + Signals = TAP (test access point)

JTAG basics

\ Lo

TDI TMS TCLK TDO

JTAG basics

T T/ Scan Cells

| /O

/ Pads

. : _ ' Boundary
TOI = I
—l— | Instruction Register : // Scan Path
— BYPASS Register —
) | ID Register |
OCther Register
TCK =
Test Access Port
™S +— Controll
TRST | ontroller
TDO

AN
N\

JTAG basics

 TAPs: serial or in parallel

« Serial means all the chains are longer

* Parallels means they need to be selected

— Chain identifier
- Chain selection instruction

Architecture

FTDI CHIP

MPSSE

\

: serial jtag :'

USB STACK

UART JTAG

ICE

usb/serial

mpsse ~ mpsse
assembler ~ jmedium

CORE

jtag state machine
driver

ice chains

ARM SOC

ARM Machine
(debuggee)

arm context

PLAN 9 Terminal
(Debugger)

JTAG state machine

1 “ Test-Logic- ™\,
Reset i
0
0 Run-Test/ 1 _f Select 1 N Select
{ E | »

dle J £ DR-Scan IR-Scan
»

1

1
1

1 0

On each TCLK, TMS is read and the state updated

JTAG state machine

o Select, Capture, Shift, Update
o Select, connect TDI, TDO
» Capture means read from pads

o Shift is shift in data on each clock

» Update actually make the data shifted count

- DR: put it in the pads, make it work
- |IR: make the instruction “run”

- Depends on current instruction, see core
manual

JTAG s.m. Driver

FTDI CHIP

MPSSE

[
Y

serial jtag }

USB STACK

UART JTAG

ICE

usb/serial

mpsse mpsse
assembler jmedium

CORE

jtag state machine
driver

ice chains

ARM SOC

ARM Machine
(debuggee)

arm context

PLAN 9 Terminal
(Debugger)

JTAG s.m driver

 Two parts
* An abstraction, JMedium
* A general state machine navigator

JTAG s.m. driver JMedium

Struct JMedium{
int (*regshift)(JMedium *jmed, ShiftTDesc *req, ShiftRDesc *rep);
int (*flush)(void *mdata);
int (*term)(void *mdata);
int (*resets)(void *mdata, int trst, int srst);
int (*rdshiftrep)(JMedium *jmed, uchar *buf, ShiftRDesc *rep);

» Has buffering (quite important) implemented by flush() and term()
» Resets to set trst and srst, both signals
connected with a circuit, need to know details
» Regshift, rdshift, main functions to implement
» ShiftRDesc useful for async replies rdshiftrep()
» Response comes in nbytes (last partially filled), nbits (byte partially filled)

JTAG s.m. Driver

» Uses shortest path (BFS, small branching
factor)

* Only need to tell it register, data, operation, fill
in a ShiftTDesc, ShiftRDesc to read response

req.reg = TapDR,;

req.buf = data;

req.nbits = 5;

req.op = ShitPauseln|ShiftOut|ShiftNoCommit;
* Only one active TAP, the rest in BYPASS

JTAG s.m. Build your own

* To implement regshift, JTAG state navigator,
e tap.[ch]
* Tell it the state, gets you there, shortest path

- pathto()
- movepath(), concatpath()

MPSSE

« USB: too much latency
 Small processor on the machine
* You download data with instructions

« MPSSE: Multi-Protocol Synchronous Serial
Engine, made by FTDI

» General USB to any kind of serial.
 Can act as a small PIC
* Makes you coffee (almost)

FTDI CHIP

MPSSE

4

USB STACK

| serial jtag } \

UART JTAG

ICE

usb/serial

mpsse mpsse
assembler jmedium

CORE

jtag state machine
driver

ice chains

ARM SOC

ARM Machine
(debuggee)

arm context

PLAN 9 Terminal
(Debugger)

-

A

A A A A

VCC3V3 N

V1.80UT

OSCl
0SCO

USBDP-

ussDM

RREF

RESETH P

TEST

>

1.8 \oit

Regulator

EEPROM
Interface

UTMI PHY

RESET
Generator

MPSSE

120 MHz Baud Rate

» » -4 ADBUSO
| Generator | @ ADBUS1
Dud Port TX MPSSE/ - ADHUS:z
> Buffer » Muls- & ADBUS3
2K Bytes purpose [ADBUSA
. UART/it- ~@—ADBUSS
Dual Port RX bang - ADBUSE
Buffer - Controler g ADBUST
2K Bytes
:
120Mz, Baud f:a‘: > l«g—BDBUSO
— l-g BDBUS1
Dusl Port TX [—B0BUS2
MPSSE/ 4
B Buffer > Mo @BoBUSS
2K Bytes purpose - B8DBUS4
UARTDit- <@ BOBUSS
Dual Port RX bang -g—BDBUSE
Buffer - Controlier |« BDBUST?
 J ' v 2K Bytes
:
—
USB Protocol Engine
And FIFO Control 120 MHz r Baxd Ratle
d » » g CDBUSO
4—‘ | Generator - CDBUS1
| I Dud Port TX &—Cchsus2
A Al A » Buffer > Muit- [@—coeuss
2K Bytes purpose @ CDBUS4
UARTbit- | <@—CDBUSS
Dual Port RX bang -g—CDBUSE
Buffer - Controler g CDBUS7
2K Bytes
:
120MHz Baud 6:5‘: . < DDBUSO
| -g—DDBUS1
Dual Pot TX > bosusz
> Buffer » Multi- [@—DDBUS3
2K Bytes purpose <@ DDBUS4
UARTD#- <& DDBUSS
Dual Port RX bang -4 DDBUSE
Buffer | Contmller g DDBUST
2K Bytes
-
PWREN#
SUSPEND®

yvyvvyvyy Yyvyvyvy Yyvyvyyvy

yyvvvyyvy

vy

MPSSE

 Each port connected to a serial interface
(different USB endpoints)

- Serial
- Jtag
« Two parts, serial communications, PIC

* |n usb/serial only serial communications

o Jtag directory like any other serial port (for
now already configured, parameters are
different)

 Programming, controlling, outside of usb/serial

MPSSE

 Complex to program

e Several “addressing modes”, clocking...

- Shift bits, shift bytes, little bit-endian, byte-
endian, edge, level...

e Difficult to debug
* \Wrote mini-assembler, assemble on the fly

e Can print mini-assembler to know what is
going on

MPSSE assembler (ma)

DataOutln EdgeDown EdgeUp LSB 3 0x42 0x34 0x56
DataOutln EdgeDown EdgeDown LSB 3 @
DataOutin EdgeDown EdgeUp LSB B3 0x42
DataOutln EdgeDown EdgeDown LSB B3 @
TmsCsOut EdgeDown MSB BOx7 0x7
TmsCsOut EdgeDown LSB B7 0x7
TmsCsOutln EdgeDown EdgeUp LSB BOx7 0x7
MCURd 0x34

Sendlmm

WaitlOHigh

AdaptClkDisab

ICE

FTDI CHIP

MPSSE

[

| serial jtag :‘

(

UART JTAG

ICE

CORE

ARM SOC

ARM Machine
(debuggee)

USB STACK

usb/serial

mpsse mpsse
assembler

jmedium

jtag state machine
driver

ice chains

arm context

PLAN 9 Terminal
(Debugger)

MPSSE

* Using the assembler implemented a
Jmedium

* Could be improved, just good enough

 The assembler can be used independently
for other MPSSE endeavours

 The JMedium completely abstracts the
MPSSE

ARM ICE

Defines several chains (like parallel TAPs),
instruction to select them (IR)

Chain 1: inject instructions

Chain 2: access to debug registers

Chain 15: access to MMU

The endianness of bits is particularly weird

- Functions to pack, unpack
- mini-language was an overkill, undone

Chain 15 is different in ARM 7 and ARM 9 (we
are using MCR and MRC and Chain 1)

ARM ICE: Chain 1

* To inject instructions to a core in debug
mode

* \When on debug mode: processor on a
different clock, isolated

* To read memory or access peripherals must
go back into real clock

* |Inject directly into pipeline (be careful to flush
after you, injecting NOPs)

ARM ICE: Chain 2

 Access debug registers
e Can be accessed also from inside the core

e Can stop the core, start the core, set
watchpoints, breakpoints, etc.

* Only one breakpoint, watchpoint in the
Sheeva, more would be better

ARM context

FTDI CHIP

MPSSE

\

serial jtag :

USB STACK

UART JTAG

ICE

usb/serial

mpsse mpsse
assembler = jmedium

CORE

jtag state machine
driver

ice chains

ARM SOC

ARM Machine
(debuggee)

arm context

PLAN 9 Terminal
(Debugger)

ARM context

» Save state of processor before debug mode
e Careful when restoring it after, very delicate

 The PC and other things are modified by
injecting instructions

* Depending on where and how we entered,
need to go back differently (calculate PC and
set interrupt flags mainly)

/proc interface

 Endianness of interface, like in ARM

» Translated to host of jtagfs after reading

e Similar to rdbfs

e Need to be able to write on some of them

* We export more registers (the mmu registers)

« Offer access to memory out of segments of

the binary, MAC

|, mmap'd registers

ACID Library

FTDI CHIP

MPSSE

¢ serial jtag ¢

USB STACK

UART JTAG

ICE

usb/serial

mpsse mpsse
assembler jmedium

CORE

jtag state machine
driver

ice chains

ARM SOC

ARM Machine
(debuggee)

arm context

PLAN 9 Terminal
(Debugger)

ACID Library

* Abstract common operations

* ACID is best for this

» Can set watchpoints, reset to debug, etc.

* Needed to remap the things out of the binary

- Undocumented map() function

* Able to stop the watchdog, amazing

e Can stop the processor, ask for MMU
translations

Jtagfs debugging

 Quite difficult, many layers

 Having debug flags to have each layer print,
very useful

 Many corners, bit endianess confusing and
even wrong in some documents

* Best documentation, OpenOCD+wireshark

* \When getting out of debug mode, if PC is not
set, the machine is frozen

 Jtagfs can be used as documentation/to learn

Experience

« Good for debugging

 Found my bug, one of the instructions was not
supported in this ARM (store in the other
stack)

e Could use more breakpoints/watchpoints
- Are software breakpoints doable?
« Slow (not for debugging, but other purposes),

- Could use DCC, multi-instruction inject

Portability (debuggee)

 Add a SOC, add CPUID, SRST/TRST circulit,
extra serial TAPs to ignore

* Only one watchpoint/breakpoint, could be
changed

* AllARM 7, ARM 9 should work

 Add medium, as explained above (other JTAG
controllers)

Future work

Only Feroceon (in Sheeva) tested

- Bug: unresponding if too late (hw?, OpenOCD too)
Added support for Armada, untested

ETM support (traces), other chains

Setting debug mode in panic (port-mortem inspection)
DCC, Chain 2, inside coprocessor 14, MCR, MRC
Loader (maybe using DCC, small assembly program)

Acid a linux/U-boot (/proc works) with some more ELF
support for the symbol tables

Multi-ICE support (multicore)

Further In the Future work

You can stop the processor, do anything to it,
start it again

Migration of the state of the processor, virtual
hardware machines

Debugging of loader+kernel
Hot patching of the kernel
Education

The limit is the imagination

Related work

 OpenOCD and similar:

- Adapt to a regular debugger like gdb, not really
programmable

- Can write batch scripts for OpenOCD but limited
too, cannot access symbols, etc.

- OpenOCD: ported to any debuggee
 Hw+3Sw debug solutions: expensive, unavailable

e Others: similar to OpenOCD or very limited
capabilities

/proc + acid + verbose flags = unique
Closest is rdbfs, but can do much less

Questions?

